RGD32 Program (Hybrid, Real-time; Version 2; 16 May 2022)

¹KST, CEST, CDT

Time ¹		Mon (J	uly 4th))	Time		Tue (Ju	ıly 5th)			Wed (J	uly 6th))		Thu (J	uly 7th)		Time		Fri (Ju	ly 8th)	
07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regist	tration		07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regist	tration			Regist	tration	-		Regis	tration	_	07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regist	ration	
Halls	Α	В	С	D	Halls	Α	В	С	D	Α	В	С	D	Α	B	С	D	Halls	Α	В	С	D
08:00 - 10:00 01:00 - 03:00 18:00 - 20:00	T01 Boltzm I (K06)	T03 Numeric I	T05 DSMC I	T16 Shock	08:00 - 10:00 01:00 - 03:00 18:00 - 20:00	S02 Rich Memorial I	T04 PDE II (K10)	T17 Gas- Surf I	T5,24 DSMC & HPC	T02 Kinetic III (K07)	S06 Porous Media	T12 Reacting I	T19,22 Jet Plume Vapor	T14 Hyper Veh I	S13 eProp I (K08)	T05 DSMC VI	S16 Hyper Flow I	08:00 - 10:00 01:00 - 03:00 18:00 - 20:00	S09 BGK I	T15 Space Veh I	T06 MD I (K15)	T18 Vacuum I
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee	Break		10:00 - 10:20 03:00 - 03:20 20:00 - 20:20		Coffee	Break			Coffee	Break			Coffee	Break		10:00 - 10:20 03:00 - 03:20 20:00 - 20:20		Coffee	Break	
10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	T01 Boltzm II	T03 Numeric II	T05 DSMC II	T21 Plasma I	10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	S03 Rich Memorial II	S18 Entropy Closure (K05)	T17 Gas- Surf II	T5 DSMC IV	S12 Emerg- ent	T09,11 Multiph Shale	T07,08 Multisc, Micro, Nano I	S15 Dust Lunar	T14 Hyper Veh II	S14 eProp II (K02)	T05 DSMC VII	S17 Hyper Flow II	10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	S10 BGK II	T15 Space Veh II (K12)	T06 MD II	T1,2,3,18 Vacuum II
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lui	nch		12:20 – 13:20 05:20 – 06:20 22:20 – 23:20	Lunc	h & Pos	ter (On	-site)		Lu	nch		Lunc	h & Pos	ster (Or	n-site)	12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lu	nch	
13:20 – 14:40 06:20 – 07:40 23:20 – 00:40	<u>Openin</u> Grac	g and Wo I Lectur	elcome R re (Liu)	temarks) <mark>(P1)</mark>	13:20 – 15:20 06:20 – 08:20 23:20 – 01:20	T02 Kinetic I	T13 Experi- ment (K03)	S07 Bulk Visco I	T5,12 Reacting & DSMC					T01 Boltz III (K11)	T03 Numeric III	S04 Nano I <mark>(K01)</mark>	T12 Reacting II	13:20 – 15:40 06:20 – 08:40 23:20 – 01:40	S11 BGK III	T15 Space Veh III	T06 MD III (K13)	T10,11 Multiph Granul
$\begin{array}{c} \textbf{14:40} - \textbf{15:00} \\ 07:40 - 08:00 \\ 00:40 - 01:00 \end{array}$		Coffee	Break		$\begin{array}{c} \textbf{15:20-15:40} \\ 08:20-08:40 \\ 01:20-01:40 \end{array}$		Coffee	Break							Coffee	Break		$\begin{array}{c} \textbf{15:40} - \textbf{17:40} \\ 08:40 - 10:40 \\ 01:40 - 03:40 \end{array}$		Farewe	ll Party	7
15:00 – 17:00 08:00 – 10:00 01:00 – 03:00	S01 Reese Memoria	T04 PDE I	T05 DSMC III	T21 Plasma II (K04)	15:40 – 16:40 08:40 – 09:40 01:40 – 02:40	Thom	as Lect (P	ure (Ut <mark>3)</mark>	oachs)		Excu	rsion		GNU-F	ERC Le	cture (H	Eu) <mark>(P4</mark>)					
17:00 - 17:10		Bre	eak		16:40 - 16:50		Bre	eak							Br	eak						
17:10 – 18:10 10:10 – 11:10 03:10 – 04:10	Bird	Lecture	(Levin	ı) <mark>(P2)</mark>	16:50 – 18:50 09:50 – 11:50 02:50 – 04:50	T02 Kinetic II	T14,16,23 Hyper Shock	S08 Bulk Visco II <mark>(K09)</mark>	T5 DSMC V					T01 Boltz IV	T03 Numeric IV (K14)	S05 Nano II	T07,08 Multisc, Micro, Nano II					
18:30 – 20:30 11:30 – 13:30 04:30 – 06:30		Rece	ption		19:00 – 21:00 12:00 – 14:00 05:00 – 07:00	IAC	Meetin	g / Next	tGen						Ban	quet						

Hybrid halls (A-Diamond, B-Vivace, C-Allegro, D-Andante)

On-site (In-person) & Virtual Poster

Time	Tue (July 5th)	Wed (July 6th)	Thu (July 7th)
10:20 - 12:20	Virtual Poster Session T1		Virtual Poster Session Th1
12:20 - 13:20	Lunch & Poster (On-site)	Lunch	Lunch & Poster (On-site)
13:20 - 15:30	Virtual Poster Session T2	Excursion	Virtual Poster Session Th2

		Keynote Lectures		Plena	ry Lectures	Topics			
K01	Murat Barisik	"Law of the Nano-wall" in Nano-channel Gas Flows	P01	Tai-Ping Liu (Grad Lecture)	Solving Boltzmann equation, Green's function approach	T01	Boltzmann and Related Equations	T15	Space Vehicle Aerodynamics and Propulsion
K02	Wonho Choe	Unique Physical Features of Cylindrical Hall Thruster Plasmas for Low Power Operation	P02	Wim Ubachs (Thomas Lecture)	Light extinction, Rayleigh-Brillouin scattering and absorption in the Earth's atmosphere, and in dilute and dense gases	Т02	Kinetic Theory for Gases and Complex Systems	T16	Shock Waves in Rarefied Flows
K03	Stéphane Colin	Molecular Tagging – an Experimental Technique for Velocimetry and Thermometry in Internal Rarefied Gas Flows	P03	Deborah Levin (Bird Lecture)	Exploring the physics of multiscale flows at the molecular level	Т03	Numerical Methods for Kinetic Equations	T17	Gas-Surface Interactions (including Condensation) and Slip Flows
K04	Zoltan Donko	Kinetic Effects in Charged Particle Transport, Gas Breakdown, and Electrical Discharges	P04	Byung-Chan Eu (GNU-ERC Lecture)	Thermodynamically consistent generalized hydrodynamic theory of flows far removed from equilibrium	Т04	PDE-based Computational Methods for Non-equilibrium Flows	T18	Vacuum Technology
K05	Clinton Groth	Development, Numerical Solution, and Application of Maximum-Entropy-Inspired Moment Closures for Non-Equilibrium Gaseous Flows with Shocks	S01	Spec Yonghao Zhang	ial Sessions Memorial Session for Jason Reese	Т05	DSMC and Related Simulations	T19	Vapor Deposition Processes and Simulation
K06	Yan Guo	Geometric Correction in Knudsen Layer Expansion	S02, S03	Igor Adamovich, Sergey Macheret, Deborah Levin	Memorial Session for Bill Rich I, II	T06	Molecular Dynamics and Particle Methods	T20	Molecular Beams and Collisions
K07	Seung Yeal Ha	A Kinetic Approach for Collective Dynamics	S04, S05	BoHung Kim	Nanoscale Transport Phenomena at Interfaces I, II	T07	Mesoscale and Multiscale Modeling	T21	Plasma Flows and Processes
K08	Kentaro Hara	Physics-based and Data-driven Models of Low- temperature Plasmas for Aerospace Applications	S06	Alina Alexeenko, Irina Graur Martin	Rarefied Flows in Porous Media	Т08	Micro- & Nano-scale Flows and Heat Transfer	T22	Jets, Plumes and Surface Interaction
K09	Elena Kustova	New Challenges in Modeling Non-equilibrium Carbon Dioxide Flows	S07, S08	Elena Kustova, Rakesh Kumar	Bulk Viscosity and Relaxation Processes I, II	Т09	Shale Gases and Porous Media Flows	Т23	Radiation and Astrophysics
K10	Chang Liu	A Brief Review of the Direct Modeling Method: Multiscale Scheme, Unified Preserving Property, and Applications	S09, S10, S11	Seok-Bae Yun	Boltzmann Equation and BGK Models: Theory and Numerics I, II, III	T10	Granular Flows and Aerosols	T24	High-performance Computing in RGD
K11	Duncan Lockerby	Simulating Low-speed Rarefied Flows around 3D Particulate and Droplets	S12	Doheon Kim, Seok-Bae Yun	Recent Advances on Emergent Behaviors and Collective Dynamics	T11	Multiphase Flows and Kinetic Modeling		
K12	Jason Rabinovitch	A (very) Quick Overview of NASA Planetary Exploration Missions and the VATMOS-SR Mission Concept	S13, S14	Eunji Jun	Electric Propulsion I, II	T12	Non-equilibrium Reacting Flows		
K13	Takashi Tokumasu	Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells	S15	Jae Hyun Park, Kyun Ho Lee	Dust in Lunar Exploration	T13	Experimental Techniques for Non-equilibrium Flows		
K14	Lei Wu	Efficient and Accurate Deterministic Solver for the Boltzmann Equation: The Fast Spectral Method and General Iterative Scheme	S16, S17	Gisu Park, Jaegang Kim	Hypersonic Flows I, II	T14	Hypersonic Vehicles, Facilities, and Diagnostics		
K15	Yonghao Zhang	Effect of Confinement on Non-equilibrium Flow of Dense Gases	S18	Clinton Groth, James McDonald	Entropy-Based Moment Closure Methods for Kinetic Equations				

Time	Mon (July 4th)							
	Room A	Room B	Room C	Room D				
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Regist	tration					
	Session M1A: Boltzmann and Related Equations I (Chair:)	Session M1B: Numerical Methods for Kinetic Equations I (Chair:)	Session M1C: DSMC I (Chair:)	Session M1D: Shock Waves in Rarefied Flows (Chair:)				
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	Geometric Correction in Knudsen Layer Expansion	Physics-Informed Neural Networks for the Vlasov Equation Hanquist, Florio, Schiassi, Furfaro* University of Arizona, USA	In-Situ, Conservative Particle Merging With Octree Sorting Huerta*, Martin, Eckhardt Jacobs Engineering Group, USA	Molecular Diffusivity Based Constitutive Relations for Rarefied Conditions Reddy* , Dadzie, Tomy <i>Heriot-Watt University, UK</i>				
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Yan Guo* Brown University, USA	Verification of a Discontinuous Galerkin Fast Spectral Solver for the Full Boltzmann Equation Adhikari*, Morton, Hu, Alexeenko Purdue University, USA	A Computational Study on Thermally Induced Knudsen Forces for a Non-Contact Controlling Device Otic* , Ohara, Yonemura <i>Tohoku University, Japan</i>	Low Reynolds Number Effect on Hypersonic Flow Over a Hemisphere with Counter-flow Jet Yoon* , Suzuki <i>The University of Tokyo, Japan</i>				
08:40 - 09:00 01:40 - 02:00 18:40 - 19:00	Simulations of Flow Past a Blunt Body in an Inert Binary Gas Mixture in Rotational Non-Equilibrium Using DSMC and the Generalized Boltzmann Equation Agarwal*, Qian Washington University, USA	Assessment of Kinetic Fokker-Planck Methods for Hypersonic Rarefied Flows Kim , Jun* <i>KAIST, Korea</i>	GSIS-LVDSMC for BGK Equation Luo, Li, Wu* Southern University of Science and Technology, China	On the Conditions of Clusters Penetration beyond the Limits of a Supersonic Jet Dubrovin *, Zarvin, Bondar, Yaskin, Kalyada, Dering Novosibirsk State University, Russia				
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Comparison of Numerical Solutions of Rarefied Hypersonic Gas Flows Using Boltzmann-based Zero-, First-, and Second-Order Constitutive Models Singh* , Battiato, Myong <i>Nanyang Technological University, Singapore</i>	General Synthetic Iterative Scheme for Unsteady Phonon Boltzmann Equation with Dual Relaxation Times Liu, Su, Wu* Southern University of Science and Technology, China	Hydrodynamics, Normal-stress Differences and Heat Transport in Rarefied Pressure Driven Poiseuille Flow Ravichandir* , Alam Jawaharlal Nehru Centre for Advanced Scientific Research, India	A Computational Investigation of High- Temperature Effect on the Type IV Shock Interaction Peng* , Hu, Z. Han, G. Han, Jiang University of Chinese Academy of Sciences, China				
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Comparative Study of Model Kinetic Equations and the Boltzmann Equation in the Shock Wave Structure Problem Poleshkin* , Kudryavtsev <i>Khristianovich Institute of Theoretical and Applied</i> <i>Mechanics SB RAS, Russia</i>	Linearly Implicit Time Integration of Vibrational Master Equation Using Automatic Differentiation Petty , Byrne* The University of New South Wales, Australia	Relativistic DSMC Collisions in EMPIRE McDoniel* , Moore, Cartwright Sandia National Laboratories, USA	Transition of The Regular to Mach Reflection of Shock Waves in Steady Rarefied Flows Shoev* , Timokhin Institute of Theoretical and Applied Mechanics SB RAS, Russia				
09:40 - 10:00 02:40 - 03:00 19:40 - 20:00	A fast Fourier Spectral Method for the Non-cutoff Boltzmann Collision Operator Qi* , Hu <i>City University of Hong Kong, Hong Kong PRC</i>	A GPU Accelerated Unified Gas-Kinetic Wave- Particle Algorithm for Rarefied Flows Yu , Xie*, Tian, Ren, Li National University of Defense Technology, China	Rarefied Atmospheric Gas Effects on The Aerodynamics of Super Low Altitude Satellites Yu, Vignesh Ram, Yoon, Kim* <i>Sejong University, Korea</i>	Application of the Mott-Smith Approximation to the Regular Shock-Wave Reflection Problem Timokhin* , Kudryavtsev, Bondar Institute of Theoretical and Applied Mechanics SB RAS, Russia				
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee	Break					
	Session M2A: Boltzmann and Related Equations II (Chair:)	Session M2B: Numerical Methods for Kinetic Equations II (Chair:)	Session M2C: DSMC II (Chair:)	Session M2D: Plasma Flows and Processes I (Chair:)				
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	Physics-informed Neural Network and Functional Interpolation for Rarefied-Gas Dynamics in the BGK Approximation De Florio , Schiassi, Barichello, Ganapol, Furfaro* University of Arizona, USA	A Conservative Multidimensional Vlasov Algorithm with Curvilinear Moving Phase-Space Grid Taitano* , Liu, Chacon Los Alamos National Laboratory, USA	Trajectory Estimation Model of Space Debris with Gravitational and Drag Perturbations Preethi , Appar, Kukilaya*, Kumar* <i>Indian Institute of Technology Kanpur, India</i>	Real-Time State Estimation for Plasma Chemistry Applications Greve*, Hara Texas A&M University, USA				
$10:40 - 11:00 \\ 03:40 - 04:00 \\ 20:40 - 21:00$	Source-sink-type Condition for Slightly Rarefied Gas Flow Driven by a Discontinuous Wall Temperature Taguchi *, Tsuji	New Fast Numerical Method for Rarefied Gas Simulation by Spherical Design and Traveling Finite Volume	A Hybrid DSMC-continuum Formulation for Jet Expansion into Rarefied Flows Tumuklu , Bellan*, Hanguist	A Kinetic-continuum Method Combining the Direct Simulation Monte-Carlo with Collision- Radiation Model for Simulation of Laser-Induced				

	Kyoto University, Japan	Sugimoto* , Morikawa Kyoto University, Japan	California Institute of Technology, USA	Plasma Plumes Volkov *, Stokes, Lin University of Alabama. USA			
11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	Global In Time Existence of Solutions With L^1- Initial Data for The Revised Enskog Equation Polewczak * <i>California State University, USA</i>	General Synthetic Iterative Scheme for Steady Solutions of Multi-Scale Polyatomic Gas Flows Zeng, Wu* Southern University of Science and Technology, China	Plume Analysis for VISORS Mission Karis *, Kazarin, Chinnappan, Alexeenko <i>Purdue University, USA</i>	Two-Dimensional Axisymmetric Fluid Modeling of Low-Pressure Capacitively Coupled Plasma Using an Extended Temporal Multi-Scale Algorithm Wu *, Gu, Hu National Yang Ming Chiao Tung University, Taiwan ROC			
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	An Attempt on the ES-Model-Based Construction of a Kinetic Equation for a Dense Gas Miyauchi *, Takata, Hattori <i>Kyoto University, Japan</i>	On the Five-Moment Maximum Entropy System of One-Dimensional Boltzmann Equation Li, Fan, Zheng* Peking University, China	On The Convergence of the Symmetrized and Simplified Bernoulli Trial (SSBT) Collision Scheme in Shock Wave Problem Javani, Roohi* , Taheri Xi'an Jiaotong University, China	On the Mechanism of Cluster Luminescence in the External Field of a Supersonic Flow Konstantinov , Zarvin*, Dubrovin, Kalyada, Yaskin, Dering <i>Novosibirsk State University, Russia</i>			
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00	Model Two-Particle Kinetic Equation for Pairs of Quasiparticles Saveliev* Fesenkov Astrophysical Institute, Kazakhstan	Data-Driven Nonlinear Compression and Denoising Martin* , Huerta, Wong, Eckhardt U.S. Army Research Office, USA	Re-Entry Trajectory Estimation for Space Debris in Low Earth Orbit Park* , Nam, Kim, Kim Agency For Defense Development, Korea	On the Role of Rotational Relaxation in Oxygen Discharges Huang* , Hu, Sun <i>Chinese Academy of Sciences, China</i>			
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Thermally Driven Flow of a Dense Gas in a Nanochannel Hattori* <i>Kyoto University, Japan</i>	Kinetic Simulation of Pulsed Evaporation into Low-Pressure Gas: Model Kinetic Equation vs DSMC Titarev* , Morozov <i>Federal Research Center, Russia</i>	Coupled Kinetic-Continuum Modeling of Re- Entry Vehicle Plasma Environment Shevyrin* , Bondar <i>Khristianovich Institute of Theoretical and</i> <i>Applied Mechanics SB RAS, Russia</i>	Investigation of Hypersonic Plasma Sheath Effects on RF Degradation Using DSMC Method Agarwal*, Derubertis * <i>Washington University, USA</i>			
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20	Lunch						
13:20 - 14:40		Opening and W	elcome Remarks				
$\begin{array}{c} 06:20-07:40\\ 23:20-00:40\end{array}$	Grad Lecture (Solving Boltzmann Equation, Green's Eulection Approach, Tai-Ping Liu *, <i>Academia Sinica and Stanford University</i>)						
14:40 – 15:00 07:40 – 08:00 00:40 – 01:00		Coffee	Break				
	Session M3A: Memorial Session for Jason Reese (Chair:)	Session M3B: PDE-based Computational Methods for Non- equilibrium Flows I (Chair:)	Session M3C: DSMC III (Chair:)	Session M3D: Plasma Flows and Processes II (Chair:)			
$\begin{array}{c} 15:00-15:20\\ 08:00-08:20\\ 01:00-01:20 \end{array}$	Flow Past a Square Cylinder in the Slip and Early Transition Regime: A Computational Study by Coupling Kinetic and Extended Thermodynamic Methods	Numerical Analysis of Slow Uniform Flow past a Circular Disk with Sharp Edge Tomita , Taguchi*, Tsuji <i>Kyoto University, Japan</i>	Investigation of the Effect of Pseudo-Random Number Generating Algorithms on DSMC Simulation Sengupta, Mankodi, Myong* Gyeongsang National University, Korea	Kinetic Effects in Charged Particle Transport, Gas Breakdown, And Electrical Discharges			
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40	Gu*, Yang, Emerson, Zhang STFC Daresbury Laboratory, UK	Reduced-order Modeling of a Collisional- Radiative, Euler Fluid System Through Low-Rank Tensor Decomposition Abrantes *, Taitano, Cambier	A Kinetic Fokker-Planck Method for Modeling Diatomic Gas Mixtures Hepp* , Grabe, Hannemann German Aerospace Center (DLR) Germany	Zoltan Donko* Wigner Research Centre for Physics, Hungary			
15:40 – 16:00 08:40 – 09:00 01:40 – 02:00	Gas Rarefaction Effects in a Two-Dimensional Acoustic Micro-Resonator Manela *, Ben-Ami Technion - Israel Institute of Technology, Israel	Air Force Research Laboratory, USA Entropy-based Ansatz for Galerkin Approximations of the Boltzmann Equation Abdelmalik *,Gamba, Kessler, Rjasanow Eindhoven University of Technology, Netherlands	Thermophoretic Force on Micron-Sized Particles in Rarefied Gas Conditions Reinartz* , Staso, Shestakov, Kunnen, Toschi, Clercx <i>Eindhoven University of Technology, Netherlands</i>	A New Class of Second-order Uniformly Asymptotic-preserving Imex Schemes for Kinetic and Hyperbolic Balance Laws with Stiff Relaxation Pichard* , Reboul, Massot <i>Ecole polytechnique</i>			

		On Moment Approximations of Boltzmann	IXV Vehicle, Comparison of Aerothermodynamic	Energy and Momentum-Preserving Particle			
16:00 - 16:20		Equation: A Generic Moment System and Its	DSMC Results and Flight Data in Rarefied	Scheme for the Magnetized Poisson-Vlasov-			
09:00 - 09:20	Drag on a Sphere over a Range of Knudsen Numbers	FEM-Based Numerical Solution	Regime	Fokker-Planck Equation			
02:00 - 02:20	and Speed Ratios	Christhuraj*, Torrilhon	Schouler*, Prevereaud, Mieussens	Chung*, Fei, Gorji, Jenny			
	White*, Cao, Agir, Vasiliadis	RWTH Aachen, Germany	ONERA, France	Swiss Federal Institute of Technology, Switzerland			
16:20 – 16:40 09:20 – 09:40 04:20 – 02:40	University of Glasgow, UK	Thermal Analysis of Mildly Rarefied Gaseous Flows through Isothermally Heated Circular Pipe Jha*, Agrawal	Different Approaches for Simulation of Convective and Radiative Heat Fluxes in Planetary Entry Problems Istomin*, Kustova, Prutko	Moment Models for Neutral Particles in the Plasma Edge Cusicanqui, Koellermeier* , Maes, Samaey			
		Inalan Institute of Technology Bombay, Inala	Saint Petersburg State University, Russia	University of Groningen, Netherlands			
16:40 – 17:00 09:40 – 10:00 02:40 – 03:00	Hypersonic Gas Flows and Gas-Surface Interactions Zhang*, Deng, Tian, Feng, Fei Beihang University, P.R. China	Domain Decomposed Hyper-reduction for Steady, Inviscid Hypersonic Flow Joshi*, Choi Virginia Polytechnic Institute and State University, USA.	Validation of a Particle-In-Cell Code with Monte Carlo Collision Using the Finite Volume Method Kuhn* , Groll University of Bremen, Germany	Fluid Simulations of Partially Magnetized Plasmas: Advanced Numerical Methods and Comparison to Kinetic Simulations Reboul* , Massot, Laguna, Anne Bourdon <i>CNRS, France</i>			
17:00 - 17:10		Bre	eak				
17:10 - 18:10		Bird I	ecture				
10:10 - 11:10	(Evenly view of the Direction						
03:10 - 04:10	(Exploring the Physics	of Multiscale Flows at the Molecular Leve	ci, Dedoran Levin ["] , University of Illinois d	ii Orbana-Champaign)			
18:30 - 20:30							
11:30 - 13:30		Rece	ption				
04.30 - 06.30							

Time		Tue (Ju	Tue (July 5th)							
	Room A	Room B	Room C	Room D						
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Regist	tration							
	Session T1A: Memorial Session for Bill Rich I (Chair:)	Session T1B: PDE-based Computational Methods for Non- equilibrium Flows II (Chair:)	Session T1C: Gas-Surface Interactions (including Condensation) and Slip Flows I (Chair.)	Session T1D: DSMC and HPC (Chair:)						
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	Detecting Order in Complexity of Molecular Collisions: Historical Perspective and Future Outlook Adamovich* Rich	A Brief Review of the Direct Modeling Method: Multiscale Scheme, Unified Preserving Property, and Applications	Gas Scattering on Porous Surfaces and Its Impact on Rarefied Gas Transport in Shale Chen* , Jun, Li, Datta, Docherty, Gibelli, Borg <i>University of Edinburgh, UK</i>	Impact Quantification of an Harmonic Oscillator Model for a Flow over a Sphere Civrais* , White, Steijl <i>University of Glasgow, UK</i>						
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Ohio State University, USA	Chang Liu* Hong Kong University of Science and Technology, Hong Kong PRC	The Influence of the Gas-Surface Interaction on the Drag and Thermophoresis on a Sphere in a Rarefied Gas Kalempa* , Sharipov University of Sao Paulo, Brazil	On the Unsteady Behavior of a Hypersonic Flow over a Double Cone Using Kinetic Methods Karpuzcu* , Levin, Cerulus, Theofilis University of Illinois, Urbana-Champaign, USA						
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Marrone and Treanor Chemical Kinetics Model Chaudhry*, Boyd , Candler University of Colorado Boulder, UK	Application of a 10-Moment Fluid Model to Transition Neutral and Plasma Flows Kuldinow *, Hara Stanford University, USA	Modeling Molecular Outgassing Transport and Deposition for Spacecraft Operating in Vacuum Anderson*, Alred, Hoey Jet Propulsion Laboratory, USA	State of the SPARTA DSMC Code Moore *, Plimpton Sandia National Laboratories, USA						
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Vibrational Kinetics in 2D High Enthalpy Flows Using GPU's Colonna *, Bonelli, Ninni, Pascazio <i>CNR-ISTP, Italy</i>	Investigation on the Validity of a Rarefied Gas Flow Model Based on the LBM as an Extended Navier-Stokes Equation Solver for Porous Media Tucny* , Vidal, Leclaire, Bertrand <i>Research Center in Industrial Flow Processes</i> (URPEI), Canada	Stochastic Multiscale Simulation Method for Heterogeneous Catalysts: Concurrent Coupling of Kinetic Monte Carlo and Fluctuating Hydrodynamics Kim*, Nonaka, Bell, Garcia University of California, USA	3D-DSMC Method Applied to Coma Generation of Cometary Nuclei: Application to Comet 67P/Churyumov-Gerasimenko Pinzón-Rodríguez* , Gerig, Marschall, Herny, Thomas University of Bern, Switzerland						
09:20 - 09:40 02:20 - 02:40 19:20 - 19:40	Theoretical Models of Chemical Reactions in	Three-dimensional Generalized Finite Difference Method for Thermal Evolution and Rarefied Flows in Porous Small Planetary Bodies Zhang* , Hartzell University of Maryland, USA	Measurements of Thermal and Tangential Momentum Accommodation Coefficients on a Solid Sample Surface in High Knudsen Number Flows Yamaguchi*, Osada, Endo Nagoya University, Japan	On the Microscopic Characteristics of Hydrogen- oxygen Combustion Based on the DSMC Method Ma , Yang*, Sun <i>Chinese Academy of Sciences, China</i>						
09:40 - 10:00 02:40 - 03:00 19:40 - 20:00	Vibrational-Translational Nonequilibrium Macheret* <i>Purdue University, USA</i>	Modeling of High Speed Gas Flows Using In- house Computational Framework based on Direct Flux Reconstruction Suman , Singh, Ujwal, Ramesh, Kumar* <i>Indian Institute of Technology Kanpur, India</i>	Development of an Effective Finite-Rate Oxidation Model for Nusil-coated Charred Carbon Preform Ablators Swaminathan Gopalan *, Borner Analytical Mechanics Associates Inc. at NASA Ames Research Center, USA	An Open Source USP Code within the Framework of SPARTA for the Simulation of Multiscale Gas Flows Feng, Tian, Zhang* Beihang University, China						
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee	Break							
	Session T2A: Memorial Session for Bill Rich II (Chair)	Session T2B: Entropy-Based Moment Closure Methods for Kinetic Equations (Chair:)	Session T2C: Gas-Surface Interactions (including Condensation) and Slip Flows II (Chair:)	Session T2D: DSMC IV (Chair:)						
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	Validation of Vibrational Kinetics in Molecular Plasmas Guerra* , Silva, C. Dias, Fromentin, Baratte, Guaitella Instituto de Plasmas e Fusao Nuclear, Instituto	Development, Numerical Solution, and Application of Maximum-Entropy-Inspired Moment Closures for Non-Equilibrium Gaseous Flows with Shocks Clinton Groth*	Molecular Dynamics Study of Gas Surface Interactions on B-Cristobalite Surface Naspoori , Kumar*, Kammara, Appar Indian Institute of Technology Kanpur, India	Outflow of a Gaseous Mixture with a Large Species Mass Ratio into Vacuum Bykov *, Fedorov, Zakharov <i>Russian Academy of Sciences, Russia</i>						

10:40 – 11:00 03:40 – 04:00 20:40 – 21:00	Superior Tecnico, Portugal	University of Toronto, Canada	Heterogeneous Catalytic Reactions of Dissociated Air on the B-cristobalite Surface Pogosbekian* , Kroupnov Lomonosov Moscow State University, Russia	Evaporation/Condensation and Nozzle Flow Modeling for FEMTA Microthruster Fowee Gasaway*, Pugia, Vorozhbit, Kazarin, Alexeenko Purdue University, USA
11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	High Temperature Flow Simulations: Reduced Models and Data Validation Kustova* , Kunova, Kravchenko, Melnik Saint Petersburg State University, Russia	Multi-Dimensional Approximate Maximum- Entropy Twenty-One-Moment Model with a Novel Approximation for Knudsen-Layer Wall Boundary Conditions Giroux* , McDonald University of Ottawa, Canada	Condensation Induced by Rapidly Moving Liquid Film Surrounded by Vapor and Non-condensable Gas Ohashi* , Kobayashi, Fujii, Watanabe <i>Hokkaido Univeristy, Japan</i>	Modeling of Lunar Dust Dispersion Using Two- Way Coupled Lagrangian-Lagrangian Framework Kumar* , Chinnappan, Bajpai, Bhavsar Indian Institute of Technology Kanpur, India
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	Modeling of Optical Diagnostics to Study Nonequilibrium Characteristics of High-Temperature Flows	Investigation into New Moment-Closure-Based Quantum Hydrodynamics Models Morin* , McDonald University of Ottawa, Canada	Gas Adsorption Modeling for Various Monoatomic Gases Considering Quantum Effects Basdanis *, Misdanitis, Valougeorgis, Sharipov University of Thessaly, Greece	Coupling Carbon Oxidation and Surface Recession in Direct-Simulation Monte Carlo Code, SPARTA Arias*, Gopalan, Borner, Stephani, Plimpton University of Illinois at Urbana-Champaign, USA
11:40 - 12:00 04:40 - 05:00 21:40 - 22:00	University of Illinois, Urbana-Champaign, USA	On the Application of Maximum-Entropy Inspired Multi-Gaussian Moment Closure for Multi- Dimensional Non-Equilibrium Gas Kinetics Brooks* , Groth, Laurent University of Toronto, Canada	Simulation of Rarefied Gas Flow in a Channel Applying Artificial Neuron Network Aksenova, Khalidov * St.Petersburg Naval Polytechnic University, Russia	Jet Expansion into the Vacuum Chamber: Kinetic- Continuum Computations and Validation Against Experiment Zaitsev*, Yarkov, Zarvin, Dubrovin, Bondar Khristianovich Institute of Theoretical and Applied Machaging SP PAS. Puspin
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Raman Miles*, Dogariu, Abbasszadehrad <i>Texas A&M University, USA</i>	First-Order Hyperbolic-Relaxation Turbulence Modelling for Moment-Closures Yan* , McDonald University of Ottawa, Canada	Simulation of Rarefied Gas Flow Near Rough Surface Applying the Solution of Inverse Problem Aksenova* , Khalidov St.Petersburg Naval Polytechnic University, Russia	Kinetic Comparative Study of Rastid Transitional Flows Li*, Jiang, Geng, Chen, Wang China Aerodynamics Research and Development Center, China
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lunch &	& Poster	
	Session T3A: Kinetic Theory for Gases and Complex Systems I (Chair:)	Session T3B: Experimental Techniques for Non-equilibrium Flows (Chair:)	Session T3C: Bulk Viscosity and Relaxation Processes I (Chair:)	Session T3D: Non-equilibrium Reacting Flows and DSMC (Chair:)
13:20 – 13:40 06:20 – 06:40 23:20 – 23:40	Discontinuous Galerkin Methods for Hyperbolic Moment Models of the Boltzmann-BGK Equation Van Heyningen* , Nguyen, Peraire <i>Massachusetts Institute of Technology, USA</i>	Molecular Tagging – an Experimental Technique for Velocimetry and Thermometry in Internal	Continuum Models for Bulk Viscosity and Relaxation in Polyatomic Gases Kustova* , Mekhonoshina, Bechina, Lagutin, Alekseev	Implementation of Detailed Balance in DSMC Based on an Internal Energy Model Coupling Ro- vibrational and Electronic Energy Yang, Sun, Hu* Chinese Academy of Sciences, China
13:40 – 14:00 06:40 – 07:00 23:40 – 00:00	Fast Evaluation of the Boltzmann Collision Operator Using Data Driven Reduced Order Models Alekseenko*, Martin, Wood California State University Northridge, USA	Rarefied Gas Flows Stephane Colin* University of Toulouse, France	Saint Petersburg State University, Russia Understanding Role of Bulk Viscosity in Rarefied Polyatomic Gases Based on Rational Extended	Relaxation Processes During Gas-jet Deposition of Diamond Structures from a Cloud of Microwave-activated Gas Yudin* , Plotnikov, Rebrov Kutateladze Institute of Thermophysics of SB RAS, Russia
14:00 – 14:20 07:00 – 07:20 00:00 – 00:20	A Rotational Relaxation Model for Nonlinear Coupled Constitutive Relations Yuan , Jiang*, Zhao, Chen <i>Zhejiang University, China</i>	Development and Validation of a Nitric Oxide Vibrational Temperature Diagnostic Using Ultraviolet Laser Absorption Spectroscopy Krish* , Streicher, Hanson <i>Stanford University, USA</i>	Thermodynamics Arima* National Institute of Technology Tomakomai College, Japan	Capturing the COVID-19 Pandemic Characteristic with DSMC Method Guan , Wang* University of Chinese Academy of Sciences, China
14:20 - 14:40	Application of the Moment System of Equations in	Experimental Investigation on Electron Beam	Vibrational Relaxation and Heat Canacity of CO2	A Comparison of Nonlinear Coupled Constitutive

14:40 - 15:00 07:40 - 08:00 00:40 - 01:00 15:00 - 15:20 08:00 - 08:20	Similarity Parameters in the Longitudinal Cylindrical Couette Problem: From the Continuous to Free Molecular Abramov, Alexandrov, Butkovskii * <i>Central Aerohydrodynamic Institute, Russia</i> Renormalized Expressions for Momentum and Energy Exchange Terms for a Disparate Gas Mixture Gorbachev *	Shock Tube Measurements of Atomic Nitrogen Collisional Excitation in Partially-ionized Nitrogen-Argon Mixtures Finch* , Granowitz, Streicher, Krish, Strand, Hanson <u>Stanford University, USA</u> Rotational Relaxation of CO2 in Supersonic Jets: A Gas Dynamic and Kinetic Study by Raman Spectroscopy	Studying Rotational Relaxation in Gas Mixtures by Molecular Simulations of Rayleigh-Brillouin Scattering Ma , Yang, Bruno, Zhang* <i>Beihang University Ching</i>	Influence of DSMC Collision Model Parameters on Hypersonic Chemically Reacting Flows Hu , Zhao, Li, Geng, Yang*, Sun <i>Chinese Academy of Sciences, China</i> Low-variance Deviational Monte Carlo Simulation of Polyatomic Rarefied Gas Flow Using Reduction Method
01:00 - 01:20	Novosibirsk State University, Russia	Alvarez*, Fernandez, Tejeda, Montero Instituto de Estructura de la Materia, Spain	beinang Oniversity, China	Shiraishi*, Imai, Yoshimoto, Takagi, Kinefuchi The University of Tokyo, Japan
$15:20 - 15:40 \\ 08:20 - 08:40 \\ 01:20 - 01:40$		Coffee	Break	
$\begin{array}{c} \textbf{15:40} - \textbf{16:40} \\ 08:40 - 09:40 \\ 01:40 - 02:40 \end{array}$	(Light Extinction, Rayleigh-Brillou	Thomas in Scattering and Absorption in the Earth's	Lecture Atmosphere, and in Dilute and Dense Gase	s, Wim Ubachs* , <i>Vrije University</i>)
16:40 – 16:50 09:40 – 09:50 02:40 – 02:50		Bre	eak	
	Session T4A: Kinetic Theory for Gases and Complex Systems II (Chair:)	Session T4B: Hypersonic Vehicles and Shock Waves (Chair:)	Session T4C: Bulk Viscosity and Relaxation Processes II (Chair:)	Session T4D: DSMC V (Chair:)
16:50 – 17:10 09:50 – 10:10 02:50 – 03:10	Reynolds Analogy for the Rarefied Gas Flow Past a Flat Plate at Zero Incidence: Similarity Parameters Abramov, Butkovskii * <i>Central Aerohydrodynamic Institute, Russia</i>	CFD/Radiation Analysis of the Chelyabinsk and St Valentine Meteoroids Reynier* , Lino Da Silva Ingénierie et Systèmes Avancés, France	New Challenges in Modeling Non-Equilibrium	DSMC Study of Taylor Couette Flow with Added Circulation Garg, Bhandarkar *, Puranik Indian Institute of Technology Bombay, India
17:10 – 17:30 10:10 – 10:30 03:10 – 03:30	Rarefied Cylindrical Couette Flow with Different Boundary Surface Temperatures Abramov, Alexandrov* , Butkovskii <i>Central Aerohydrodynamic Institute, Russia</i>	Experimental Investigation on the Role of Boundary Layers Around a Supersonic Cylinder in Rarefied Flows Kovacs*, Passaggia, Mazellier, Lago <i>CNRS, France</i>	Elena Kustova* Saint Petersburg State University, Russia	Computation of Hypersonic Flow around an Isolated Roughness Element Using Kinetic Theory Klothakis*, Dylewicz, Theofilis, Levin Technical University of Crete, Greece
17:30 – 17:50 10:30 – 10:50 03:30 – 03:50	A Kinetic Model for Rarefied Flows of Molecular Gases with Vibrational Modes Li, Wu* Southern University of Science and Technology, China	Simulation of Radiating Non-Equilibrium Flows around a Capsule Entering Titan's Atmosphere Beyer* , Pfeier, Nizenkov, Fasoulas <i>University of Stuttgar, Germany</i>	Internal Energy Relaxation Processes and Bulk Viscosities Bruno, Giovangigli * Ecole Polytechnique, France	Surface Chemistry Modelling with the Simulation Tool PICLas Lauterbach* , Pfeier, Fasoulas University of Stuttgart, Germany
17:50 – 18:10 10:50 – 11:10 03:50 – 04:10	Sound Wave Propagation in Rarefied Polyatomic Gases Li, Su, Zhang* The University of Edinburgh, UK	On Transitory Shock Interaction with Incipient Flow Separation Kang , Lee* <i>KAIST, Korea</i>	Bulk Viscosity of Dilute Gases Using MD	Analysis of Non-Equilibrium Gas Flows with Evaporation from Porous Array Membranes Imai*, Yoshimoto, Takagi, Kinefuchi The University of Tokyo, Japan
18:10 – 18:30 11:10 – 11:30 04:10 – 04:30	Anomalous Transport in Flows near Simple Bodies Aristov*, Voronich, Zabelok Russian Academy of Sciences, Russia	Numerical Analysis of Shock Wave Propagation in a Macrotube at Reduced Pressures Lokhande*, Deshpande Veermata Jijabai Technological Institute, India	Simulations Sharma , Kumar* Indian Institute of Technology Kanpur, India	Implementation of Machine Learning Methods for Non Equilibrium Gas Dynamic Problems Istomin*, Kustova, Lagutin, Shalamov Saint-Petersburg State University, Russia
18:30 – 18:50 11:30 – 11:50 04:30 – 04:50	Kinetic Study of Spatial Spread of COVID-19 Waves Aristov*, Aliev, Stroganov, Yastrebov Russian Academy of Sciences, Russia	Experimental and Numerical Analysis of Rarefaction and Base Geometry Effects on Supersonic Flows Toussaint*, Noubel , Baranger, Braeunig, Lago <i>CEA-CESTA, France</i>	Quantum-classical Calculations of Transport Collision Integrals from Accurate Intermolecular Potentials Hong, Coletti, Bartolomei, Sun*, Pirani Chinese Academy of Sciences, China	Direct Simulation Monte Carlo Modeling of the Flip over Effect in Laser Produced Plasma Expansion Using SPARTA Emperado*, Dasallas, Garcia University of the Philippines Diliman, Philippines
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00		IAC Meetin	g / NextGen	

Time	Wed (July 6th)							
	Room A	Room B	Room C	Room D				
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Regist	tration					
	Session W1A: Kinetic Theory for Gases and Complex Systems III (Chair:)	Session W1B: Rarefied Flows in Porous Media (Chair:)	Session W1C: Non-equilibrium Reacting Flows I (Chair:)	Session W1D: Jet, Plumes and Vapor Deposition (Chair:)				
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	A Kinetic Approach for Collective Dynamics	Heat Conduction of Rarefied Gas in Porous Media Su*, Zhang The University of Edinburgh, UK	Shock-Tube and Laser Absorption Study of the N2 + O → NO + N Reaction Rate at High Temperatures Streicher*, Krish, Chang, Hanson Stanford University, USA	Rarefied Supersonic Jet of Metal Vapor with a Light Carrier Gas: Cluster Formation Processes Bykov* , Fedorov, Safonov, Starinskiy, Bulgakov Saint Petersburg Polytechnic University, Russia				
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Securing Year Fraction Security South Korea	Rarefied Porous Flow Effects in Lyophilization Wheeler*, Kazarin, Narsimhan, Alexeenko Purdue University, USA	Thermal Conductivity of Molecular Nitrogen from ab initio Direct Molecular Simulations Valentini* , Grover, Bisek, Verhoff <i>University of Dayton Research Institute, USA</i>	Moon Landing: Thrusters Cluster Plume Interactions Modelling Zitouni* , Kast, Peukert <i>OHB, Germany</i>				
08:40 - 09:00 01:40 - 02:00 18:40 - 19:00	Study of the Chemical Composition of Pyrolysis Distillate Salokhiddinov* National University of Uzbekistan named after MirzoUlugbek, Uzbekistan	Predicting Rarefied Gas Flow Through Surface Functionalized Channels Kunze *, Besser, Groll, Thöming University of Bremen, Germany	Role of Translational Non-equilibrium Effects on Reactive Dynamics Controlling the Shock to Detonation Transition Using Molecular Dynamics Murugesan* , Radulescu University of Ottawa, Canada	Continuum-based Simulation of the Plume and Dusty Surface Interaction in Lunar Landing Using OpenFOAM Ejtehadi *, Mankodi, Sohn, Myong <i>Chungnam National University, Korea</i>				
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Transport Coefficients for Dilute Relativistic Degenerate Gases in Arbitrary Dimensions Garcia-Perciante* , Mendez, Chacon-Acosta Universidad Autonoma Metropolitana, Mexico	To be updated Kodama* Daiichi Sanyo Co., Ltd., Japan	Quantum Mechanically Guided Simulations of Nonequilibrium Hypersonic Flow Grover* , Valentini, Verhoff, Bisek University of Dayton Research Institute, USA	Calculation of Sputtered Atom Deposition via Non-Maxwellian View Factor Model and Particle VDF Compression Araki* , Martin Air Force Research Laboratory, USA				
09:20 - 09:40 02:20 - 02:40 19:20 - 19:40	Locally-implicit Discontinuous Galerkin Schemes for the Kinetic Boltzmann-BGK System That Are Arbitrarily High-Order And Asymptotic-Preserving Rossmanith *, Sar <i>Iowa State University, USA</i>	Macroscopic Model for Unsteady Slip Flow in Porous Media Lasseux*, Valdés-Parada, Bottaro CNRS, University of Bordeaux, France	Bow Shock Stand-off Distance in CO2 at Re- entry Velocities: Theoretical Analysis and Numerical Simulation Bondar* , Shoev <i>Khristianovich Institute of Theoretical and</i> <i>Applied Mechanics SB RAS, Russia</i>	A Parabolic Supersonic Nozzle for High Center- Line Density for Free Jets Patel* , Thomas, Joshi Institute for Plasma Research, India				
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Analytical Solution for the Development of Rarefied Shear Flow Mohan* , Sameen, Srinivasan, Girimaji Indian Institute of Technology Madras, India	Temperature Gradient Driven Flows through a Microporous Medium Johansson, Perrier, Topin, Graur* <i>Aix-Marseille University, France</i>	Evaluation of Velocity Gradient Term in Goulard Heat Transfer Theory Jeong , Yang, Yoon, Kim* <i>Sejong University, Korea</i>	Splitting of Laser-induced Plasma Plumes Due to the Snow-plow Effect: Kinetic-continuum Simulations Volkov *, Humphrey University of Alabama, USA				
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee	Break					
	Session W2A: Recent Advances on Emergent Behaviors and Collective Dynamics (Chair:)	Session W2B: Multiphase Flows and Kinetic Modeling (Chair:)	Session W2C: Multiscale, Micro- & Nano-scale Flow and Heat Transfer I (Chair:)	Session W2D: Dust in Lunar Exploration (Chair:)				
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	A Unified Framework for Distributed Optimization Algorithms over Time-varying Directed Graphs Kim* , Choi, Yun <i>Hanyang University, Korea</i>	Particle Impact on the Surface of a High Mach Number Recirculating Double-Cone Flow Liu*, Marayikkottu, Karpuzcu, Levin University of Illinois Urbana Champaign, USA	Thermal Transportation inside Oscillating Cavity over Various Flow Regimes Lim, Xu* Hong Kong University of Science and Technology, Hong Kong PRC	Kinetic Particle Simulations of Plasma Charging and Dust Transport near the Lunar Terminator Han* , Zhao, Lund <i>Missouri University of Science and Technology</i> ,				
10:40 - 11:00		Numerical Simulation of Instabilities Emerging in	Effect of Boundary in Nano-confinement	USA				

03:40-04:00		Gravitational Fields Using Kinetic and Continuum	Hossain, Kim*	
20:40 - 21:00		Approaches	University of Ulsan, Korea	
		Kashkovsky, Kudryavtsev, Shershnev*		
	Asymptotic Behavior of a System for Coupled	Khristianovich Institute of Theoretical and		Electrostatic Dust Motion on the Moon and
	Schrodinger Equations	Applied Mechanics SB RAS, Russia		Asteroids: A Review
11.00 11.20	Kim*, Park	A Multi-Continuum Model for Gas Flow in	Variational Multiscale Moment Methods for the	Hartzell*
11:00 - 11:20 04:00 04:20	Sungshin women's University, Korea	Shale Recomparis	Boltzmann Equations	University of Marylana, USA
04.00 - 04.20 21.00 21.20		Wu* Wang Wang	Baidoo*, Abdelmalik, Hughes, Gamba, Caarelli	
21.00-21.20		Colorado School of Mines USA	The University of Texas at Austin, USA	
		Numerical Analyzition of Nano-particle		
		Following Features for Rayleigh Scattering		
11:20 - 11:40	Discreye Derivation of the Euler alignment Model	Velocity Measurement Test in Low Density Wind	Simplified Unified Wave-Particle Method and	Spacesoft Engine Diumag in Near Veguumi
04:20 - 04:40	with Singular Communication Weights from a	Tunnel	Direct Relaxation Process	Spacecrait Engine Plumes in Near-vacuum:
21:20 - 21:40	Kinatia Eakkar Planak alignment Model	Zhonghua*, Zhihui, Aiguo, Junlin	Liu*, Yang, Fang, Geng, Zhong*	How Source Alred Anderson Martin
	Choi Kim*	China Aerodynamics Research and Development	Northwestern Polytechnical University, China	Shallcross Wong
	Korea Institute for Advanced Study Korea	Center, China		California Institute of Technology USA
	Rorea institute for Mavaneea Stady, Rorea	Unified Gas-Kinetic Wave-Particle Method for	Numerical Analysis of Unsteady Rarefied Gas	California Insulate of Teenhology, OSI
11:40 - 12:00		Gas-Particle Flow in All Regimes	Flows around a Sphere Induced by Impulsive	
04:40 - 05:00		Yang, Xu*	Rotation	
21:40 - 22:00		Hong Kong University of Science and Technology,	Tsuji, Taguchi*, Kotera	
	Convergence Analysis of the Discrete Consensus-	Hong Kong PRC	Kyoto University, Japan	Lunar Dust: Recent Observations and
	Based Optimization Algorithm with Random Batch	Numerical Simulation of Decent Vehicle Entry in	On the Application of the Regularized Lattice	Experimental Studies
12:00 - 12:20	Ke He Jin Kim*	Dust Flow Conditions	Boltzmann Method for Isothermal Flows with	Zillang [*] , Gall, Ale
05:00 - 05:20	Hanvana University Korea	Polyanskiy*, Zaitsev	Non-Vanishing Knudsen Numbers	Macau Macau
22:00 - 22:20	Hunyung Oniversity, Koreu	Khristianovich Institute of Theoretical and	Jonnalagadda [*] , Yadav, Sharma, Agrawal	macau
12.20 12.20		Applied Mechanics SB RAS, Russia	Indian Institute of Science, India	
12:20 - 13:20		I.u.	a da	
05.20 - 00.20 22.20 - 23.20		Lui		
13.20 - 23.20				
06:20 - 14:00		Excu	rsion	
23:20 - 07:00		EAct		

Time		Thu (Ju	ıly 7th)	
	Room A	Room B	Room C	Room D
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Regist	ration	
	Session Th1A: Hypersonic Vehicles, Facilities, and Diagnostics I (Chair:)	Session Th1B: Electric Propulsion I (Chair:)	Session Th1C: DSMC VI (Chair:)	Session Th1D: Hypersonic Flows I (Chair:)
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	Numerical Simulations of Rarefied Gas Flow over an Aero-spiked Hypersonic Blunt Body Using the Second-Order Boltzmann-Curtiss Constitutive Model Chourushi , Singh, Vishnu, R. S. Myong* <i>Gyeongsang National University, Korea</i> Doppler-free Saturated Absorption Velocimetry for	Physics-based and Data-driven Models of Low- Temperature Plasmas for Aerospace Applications Hara*	Noncontinuum Effects at the Smallest Scales of Turbulence Gallis*, McMullen, Krygier, Torczynski Sandia National Laboratories, USA Thermal Transpiration Flows Induced by	Recent Progress of Impulse Facilities at KAIST Park* , Kim, Yang <i>KAIST, Korea</i>
01:20 - 08:40 $01:20 - 01:40$ $18:20 - 18:40$	Low-density Hypersonic Flow Diagnostics Roy*, O'Byrne The University of New South Wales, Australia	Stanjora Oniversity, OSA	Differences in Accommodation Coefficients Sugimoto*, Sugimoto Kyoto University, Japan	Application of Modified Chemical Kinetic
08:40 - 09:00 01:40 - 02:00 18:40 - 19:00	Prediction of Aerodynamic Heating over Hypersonic Flow Using Rapid Aerothermodynamic Analysis Program Yeo, Han, Kim, Seo, Kim* Seoul National University, Korea	Ion Transport in the Magnetic Nozzle of Electrodeless Plasma Thrusters for Spacecraft Mazouffre* , Vinci, Inchingolo, Navarro-Cavalle, Faiordo	Direct Simulation Monte Carlo Simulations of 2D Rayleigh-Benard Convection Han , Lo*, Mo National Defense University, Taiwan ROC	Parameters to High-Enthalpy Flows Kim* Sejong University, Korea
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Numerical Simulation of Aerodynamic Characteristics of a Sharp-edged Vehicle Using NNW-UGKS Dingwu , Jin, Pei*, Meiliang, Haomin China Aerodynamics Research and Development Center, China	PIC Model of Air-breathing Hall thruster	A Hybrid Unified Stochastic Particle Bhatnagar- Gross-Krook and DSMC Method for Polyatomic Gases Fei*, Hu*, Jenny Huazhong University of Science and Technology, Chinese Academy of Sciences, China	Electronic-state-resolved Non-equilibrium Analysis of ICP Discharges Kumar* , Munafo, Panesi University of Illinois at Urbana-Champaign USA
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	A Canonical Optimization Approach for Waverider Inverse Design Son , Son, Yee* Seoul National University, Korea	Taccogna*, Cichocki, Minelli CNR-ISTP, Italy	The Chemically Reacting Hypersonic Flow over a Reentry Capsule with Hybrid Chemical Reaction Gokul , Malaikannan* SRM Institute of Science and Technology, India	A Numerical Model for Porous Ceramics
09:40 - 10:00 02:40 - 03:00 19:40 - 20:00	Numerical Simulation of Operating Characteristics of JF12 Shock Tunnel for Mars Entry Aerodynamic Tests Han*, Hu, Peng, Han, Jiang Chinese Academy of Sciences, China	Part 1: Experimental Studies on Taylor Cone Formation with Annular/Linear Slit Configured Emitter for FEEP Thruster Kwon, Kumar, Kwon, Yoh* Seoul National University, Korea	Recommended Direct Simulation Monte Carlo Collision Model Parameters for Reacting Methane Flows Gosma, Gopalan, Stephani* University of Illinois at Urbana-Champaign, USA	Composites Oxidation Using Volume Averaging Theory Le Maout*, Konnik, Rzepka, Foster, Panerai, Stephani University of Illinois at Urbana-Champaign, USA
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee	Break	
	Session Th2A: Hypersonic Vehicles, Facilities, and Diagnostics II (Chair:)	Session Th2B: Electric Propulsion II (Chair:)	Session Th2C: DSMC VII (Chair:)	Session Th2D: Hypersonic Flows II (Chair:)
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40 10:40 – 11:00	Experimental Investigation of Waverider Aerodynamic Forces in Supersonic and Hypersonic Slip Regime Noubel* , Lago, Baranger <i>CNRS, France</i> Experimental Study of Sphere Drag Measurement in Hypersonic Low Density Every Using Acceleration	Unique Physical Features of Cylindrical Hall Thruster Plasmas for Low Power Operation Choe* , Kim, Doh, Lim, Lee, Kim <i>KAIST, Korea</i>	Effect of Rarefaction on Axial Vortex Using Direct Simulation Monte Carlo Dhurandhar* , Mohan, Sharma, Sameen <i>Indian Institute of Technology Madras, India</i> Thermally Driven Rarefied Flows Induced by a Porticilly Heated Directories of Changel	Self-consistent Modeling of ICP Discharges Munafo* , Kumar, Le Maout, Chiodi, Panesi University of Illinois at Urbana-Champaign, USA
$\begin{array}{c} 03{:}40-04{:}00\\ 20{:}40-21{:}00 \end{array}$	Lee, Park* KAIST, Korea		Zhu, Roohi * Xi'an Jiaotong University, China	Bayesian Inference of Chemical-Kinetic

11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	Validity of the Blowing Correction Correlation in Rarefied Flow Regimes Appar, Sivakumar, Bajpai, Kumar*, Naspoori Indian Institute of Technology Kanpur, India	Hybrid Kinetic-Fluid Simulations of Hall Thruster Plasma Dynamics Kawashima *, Komurasaki	Flow-field and Performance Analysis of Plug Nozzle Under Continuum, Rarefied and Transitional Flow Regimes Jency, Appar, Khan, Kumar* Indian Institute of Technology Kanpur, India	Parameters of CN for Titan Entry Jo, Rostkowski, Panesi* University of Illinois at Urbana-Champaign, USA
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	A Pump-Probe Laser-Induced Fluorescence Diagnostic for Measuring Velocity Distributions in High-Enthalpy Wind Tunnels Cousens* , O'byme University of New South Wales Canberra, Australia	R&D Activities of Electric Propulsion	Hypersonic Turbulence Modeling from Rarefied to Continuum Regimes Tumuklu , Hanquist* <i>University of Arizona, USA</i>	Comparison of Thermochemical Nonequilibrium Models for Hypersonic Flow Analysis in OREX Vehicle Yang , Kim*
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00	Aerodynamic Force Measurement Technique of Free- Flying Model in a Shock Tunnel Choi , Park* <i>KAIST, Korea</i>	at Korea Aerospace Research Institute (KARI) Kim*, Kim, Cho, Doh, Lee, Kim, Choe <i>KAIST, Korea</i>	Monte Carlo Simulation of Thermal Creep Flow Around a Set of Plates with Different Surface Temperatures in a Pipe Matsumoto *, Kurita, Kato Yokohama National University, Japan	Sejong University, Korea
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Development of Detonation Driven Shock Tunnels and the Application in Hypersonic Vehicle Tests Hu* , Peng, Han, Han, Jiang <i>Chinese Academy of Sciences, China</i>	Sensitivity Analysis of Mesh-to-Mesh Interpolation in 2D Fluid-Particle Simulation of Hall Thruster Plasma Jung , Sung* Korea Aerospace University, Korea	Multi-Zone Kinetic-continuum Simulation of An Orbit Correction Thruster Back Flow Around a Space Station Kashkovskya*, Bondar Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Suitability of Tunable Diode Laser Absorption Spectroscopy Experiments for Low Density Flows Kelly* , Cousens, O'Byrne University of New South Wales, Australia
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lunch &	ż Poster	
	Session Th3A: Boltzmann and Related Equations III (Chair:)	Session Th3B: Numerical Methods for Kinetic Equations III (Chair:)	Session Th3C: Nanoscale Transport Phenomena at Interfaces I (Chair:)	Session Th3D: Non-equilibrium Reacting Flows II (Chair:)
13:20 – 13:40 06:20 – 06:40 23:20 – 23:40	Simulating Low-speed Rarefied Flows around 3D Particulate and Droplets	Efficient Compressible Lattice Boltzmann Methods: Numerical Equilibria and Adaptive Mesh in Phase Space Coreixas* , Latt, Shan University of Geneva, Switzerland	"Law of the Nano-wall" in Nano-channel Gas Flows	Theoretical Modeling of Effects of Microstructure on Surface Oxidation under Rarefied Nonequilibrium Conditions Zhang , Wang* University of Chinese Academy of Sciences, China
13:40 – 14:00 06:40 – 07:00 23:40 – 00:00	University of Warwick, UK	A symmetry Class Approach to 3D Discrete Collision Models via Computer Algebra Babovsky* , Grabmeier <i>Technische Universität Ilmenau, Germany</i>	Barisik* Izmir Institute of Technology, Turkey	Vibrational-Chemical Coupling in State- Dependent Reaction Models in CO2 Kustova, Savelev* Saint Petersburg State University, Russia
14:00 – 14:20 07:00 – 07:20 00:00 – 00:20	Moment Equations for a Polytropic Gas Reproducing Adjustable Transport Coeffcients Djordjic* , Pavic-Colic, Torrilhon <i>RWTH Aachen, Germany</i>	Solving Kinetic Equations Using Quadrature Based Moment Methods Van Cappellen* , Laboureur von Karman Institute for Fluid Dynamics, Belgium	Nanofluidic Transport under Continuous and Discontinuous Graphitic Confinements Park * POSTECH, Korea	Construction of a Boltzmann Model Equation Synchronously Involving Polyatomic Molecular Internal Energy, Dissociation and Recombination Effects for Multicomponent Gases Wu* , Li, Peng, Jiang <i>China Aerodynamics Research and Development</i> <i>Center, China</i>
14:20 – 14:40 07:20 – 07:40 00:20 – 00:40	Compactness Property for the Linearized Boltzmann Operator in the Polyatomic Case Brull *, Shahine, Thieullen Institut de mathematiques de Bordeaux, France	Neural Network Assisted Modeling and Simulation of Kinetic Theory and Fluid Mechanics Xiao* Schotthöfer, Frank Karlsruhe Institute of Technology, Germany	Exploring the Link Between the Interfacial and	Slip Boundary Conditions for Gas Mixture Flows with State-to-state Vibrational-Chemical Kinetics Shakurova [*] , Kustova Saint Petersburg State University, Russia
14:40 – 15:00 07:40 – 08:00 00:40 – 01:00	Hilbert Expansion Based Fluid Models for Describing Rarefied Gases Interacting with a Plasma Background Medium Maes*, Dekeyser, Koellermeier, Baelmans, Samaey <i>KU Leuven, Belgium</i>	Nonlinear Approximation of the Boltzmann Equation with an ES-BGK Collision Model Using the Method of Moments van der Woude * Abdelmalik, van Brummelen Eindhoven University of Technology, Netherlands	Bulk: Functionalized 2D Materials as a Key for Nanoscale Engineering Bakli* Indian Institute of Technology Kharagpur, India	Computational Simulation of Reentry Flows over Hypersonic Vehicles Using Nonlinear Coupled Constitutive Relations Zeng* , Zhao, Jiang, Chen <i>Zhejiang University, China</i>

15:00 – 15:20 08:00 – 08:20 01:00 – 01:20	Measure-valued Solution to the Inelastic Boltzmann Equation with Hard Potentials Qi* , Jang The Chinese University of Hong Kong, Hong Kong, PRC	Simulation of Multi-species Non-equilibrium Gas Flows with the Particle-Based Ellipsoidal Statistical Bhatnagar-Gross-Krook Method Hild*, Pfeiffer University of Stuttgart, Germany	Modeling Molecular Transport Phenomena in Nanochannels, Superlattices and Nanotubes Masuduzzaman, Al Hossain, Karim, Kim * <i>University of Ulsan, Korea</i>	Study on Chemical Reaction Channels of CO2+O ↔ CO + O2 Based on ab initio Calculation Furudate *, Hagebaum-Reignier, Jeung <i>Chungnam National University, Korea</i>
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40		Coffee	Break	
15:40 – 16:40 08:40 – 09:40 01:40 – 02:40	GNU-ERC Lecture (Thermodynamically Consistent Generalized Hydrodynamic Theory of Flows Far Removed from Equilibrium, Byung-Chan Eu*, McGill University)			
16:40 – 16:50 09:40 – 09:50 02:40 – 02:50		Bre	eak	
	Session Th4A: Boltzmann and Related Equations IV (Chair:)	Session Th4B: Numerical Methods for Kinetic Equations IV (Chair:)	Session Th4C: Nanoscale Transport Phenomena at Interfaces II (Chair:)	Session Th4D: Multiscale, Micro- & Nano-scale Flow and Heat Transfer II (Chair:)
16:50 – 17:10 09:50 – 10:10 02:50 – 03:10	Dissipation and Dispersion Properties of Discrete Velocity Boltzmann Model on Nine-velocity Lattice Ilyin* Russian Academy of Sciences, Russia	Efficient and Accurate Deterministic Solver for the Boltzmann Equation: The Fast Spectral Method and General Iterative Scheme Lei Wu*	Microfluidic Platform for Rapid and Dynamic Transport Control of Nanoparticles Kim *, Ha, Seo <i>UNIST, Korea</i>	Three-dimensional Unified Gas-Kinetic Wave- Particle Method for Diatomic Gases in Rotational and Vibrational Nonequilibrium Wei , Zhu, Xu* <i>The Hong Kong University of Science and</i> <i>Technology, Hong Kong PRC</i>
17:10 – 17:30 10:10 – 10:30 03:10 – 03:30	Balanced States and Closure Relations: Kinetic Models in the Fluid Dynamic Limit Babovsky* Technische Universität Ilmenau, Germany	Southern University of Science and Technology, China	A Comparison of Spectral Current and	Diffusion-slip Boundary Conditions in Modelling Flows in Micro- and Nano-channels Tomy* , Dadzie* <i>Heriot-Watt University, UK</i>
17:30 – 17:50 10:30 – 10:50 03:30 – 03:50	About Macroscopic Boundary Conditions for Three Dimensional Nonlinear Nonstationary Boltzmann's Moment System of Equations Sakabekov *, Auzhani Satbayev University, Kazakhstan	Limits of the Kinetic Interpretation of Lattice Boltzmann Schemes: A Cure via a Macroscopic Standpoint with Finite Difference Schemes on the Conserved Moments Bellotti* , Graille, Massot Institut Polytechnique de Paris, France	Temperature Dependent Wavelength of Vibrational Carrier Modes in Carbon Nanotubes and Boron Nitride Nanotubes Anandakrishnan , Sathian* Indian Institute of Technology Madras, India	Approximation of State-Resolved Diffusion Coeffcients Using Artificial Neural Networks Bechina , Kustova, Avrutskiy, Chikitkin* Moscow Institute of Physics and Technology, Russia
17:50 - 18:10 10:50 - 11:10 03:50 - 04:10	Kinetic Theory of Confined Systems Maynar* , Garcıa de Soria, Brey <i>Universidad de Sevilla, Spain</i>	Exponential BGK Integrator for Multiscale Flow Simulation Garmirian* , Gorji, Pfeiffer University of Stuttgart, Germany	Coherent Phonon Scattering in the Coated Grain Nanocomposites and Their Thermoelectric Performance Kim*	A data-driven Approach to DSMC-CFD Coupling for Multiscale Gas Flows Tatsios* , Chinnappan, Kamal, Vasileiadis, Gibelli, Docherty, White, Borg, Kermode, Lockerby University of Edinburgh, UK
18:10 – 18:30 11:10 – 11:30 04:10 – 04:30	Understanding an Instability in Vibrated Granular Monolayers Soria* , Maynar, Brey <i>Universidad de Sevilla, Spain</i>	Advances in the Development of the Fokker- Planck Method for Simulation of Rarefied Gases Basov *, Grabe <i>German Aerospace Center, Germany</i>	Yonsei University, Korea	Asymptotic Modelling of the Flow of a Thermal Binary Gas Mixture in a Microchannel with Variable Width Croizet* , Gatignol Sorbonne University, France
18:30 – 18:50 11:30 – 11:50 04:30 – 04:50	Consistent Models of Vibrational Kinetics in CO2 Flows Kosareva*, Kustova, Hannemman, Hannemman Saint-Petersburg State University, Russia	SMARTA: a Code Based on the View-Factor Method for Collisionless Flows Parodi *, Alsalihi, Magin von Karman Institute for Fluid Dynamics, Belgium	Tangential Knudsen Force Yonemura*, Otic Chubu University, Japan	Computational Analysis of Pressure-Driven Gas Flows through a Periodical System of Short Channels in Wide Range of Rarefaction Voronich* , Titarev The Russian Academy of Sciences, Russia
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00	Banquet			

Time	Fri (July 8th)			
	Room A	Room B	Room C	Room D
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)	Registration			
	Session F1A: Boltzmann Equation and BGK Models: Theory and Numerics I (Chair:)	Session F1B: Space Vehicle Aerodynamics and Propulsion I (Chair:)	Session F1C: Molecular Dynamics and Particle Methods I (Chair:)	Session F1D: Vacuum Technology I (Chair:)
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	Ellipsoidal BGK Model of the Boltzmann Equation with the Correct Prandtl Number Yun* Sungkyunkwan University, Korea	The VATMOS-SR Mission Concept: DSMC Studies of the Gas Sampling Borner* , Rabinovitch, Gallis, Parai, Petkov, Avice, Sotin <u>AMA Inc. at NASA Ames Research Center, USA</u> Performance Comparison of Xenon and Krypton	Effect of Confinement on Non-equilibrium Flow of Dense Gases Vongbao Zhang*	Estimation of Gas Surface Interaction Coefficients in VKI's Dual Chamber Vacuum Facility Jorge*, Hubin, Magin von Karman Institute for Fluid Dynamics, Belgium
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Non-Uniqueness of Stationary Solutions to the	Mixture Discharges in 500 W-class Cylindrical Hall Thruster Kim, Park, Doh, Lee, Choe* <i>KAIST, Korea</i>	The University of Edinburgh, UK	Molecular Transport Processes for the Cryogenic SPHEREx Observatory Alred*, Moore, Susca, Ricchiuti, Rocca, Soares California Institute of Technology, USA
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Radiative Transfer Equation Jang*, Velázquez Pohang University of Science and Technology, Korea	Reentry Aerothermodynamics of a Deorbiting CubeSat with DragSail Adhikari*, Black, Cofer, Alexeenko Purdue University, USA	Knudsen Minimum Disappearance in Molecular- Confined Flows Corral-Casas* , Li, Borg, Gibelli <i>The University of Edinburgh, UK</i>	Evaluation of a Space-borne MLI Performance by Using and Experimental Estimation Kim , Chang, Kim, Huh* <i>Chungnam National University, Korea</i>
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Holder Regularity of the Boltzmann Equation Past an Obstacle Kim, Lee* Pohang University of Science and Technology,	Investigation of Gurney Flap on Aerodynamic Characteristics of NACA4412 Airfoil Wang , Li, Jiang*, Mao, Li China Aerodynamics Research and Development Center, China	Comparison of Two Approaches in Molecular Dynamics Simulation of Gas-Surface Interaction Tao , Wang* University of Chinese Academy of Sciences, China	Topological Impact of a Simple Self-Replication Geometric Structure with Great Application Potential in Vacuum Pumping and Photovoltaic Industry Luo*, Day Karlsruhe Institute of Technology, Germany
09:20 - 09:40 02:20 - 02:40 19:20 - 19:40	ES-BGK Model for Diatomic Gases with	Plume Simulation of Atmosphere-Breathing- Electric-Propulsion System Moon , Jun* <i>KAIST, Korea</i>	Characterization of Second-order Non-Navier- Fourier Constitutive Laws in Planar and Cylindrical Couette Flow Using Molecular Dynamics Simulations Kammara , Sharma, Myong* <i>Gyeongsang National University, Korea</i>	Rarefied Gas Dynamic Applications in Spacecraft Contamination Control Engineering at NASA JPL Hoey*, Soares, Alred, Anderson, Martin, Shallcross, Wong California Institute of Technology, USA
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Vibrational Energy Exchanges Dauvois, Mathiaud, Mieussens *, Pfeiffer <i>Univ. Bordeaux, France</i>	Similarity Study on The Aeroheating of the Hypersonic Strong Shear-Compression Flow Gao , Wang* University of the Chinese Academy of Sciences, China	Multiscale Modeling of Electrospray Thrusters with Particle-in-Cell and Molecular Dynamics Nuwal* , Azevedo, Klosterman, Levin, Rovey <i>University of Illinois Urbana Champaign, USA</i>	A Direct Simulation Monte Carlo Framework for the Simulation of Mercury Driven Diffusion Pumps for Fusion Reactor Exhaust Pumping Teichmann* , Giegerich, Day <i>Karlsruhe Institute of Technology, Germany</i>
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20	Coffee Break			
	Session F2A: Boltzmann Equation and BGK Models: Theory and Numerics II (Chair:)	Session F2B: Space Vehicle Aerodynamics and Propulsion II (Chair:)	Session F2C: Molecular Dynamics and Particle Methods II (Chair:)	Session F2D: Vacuum Technology II (Chair:)
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	To be updated Kim* University of Wisconsin Madison, USA	A (very) Quick Overview of NASA Planetary Exploration Missions and the VATMOS-SR Mission Concept Jason Rabinovitch*	Multiscale Simulation of Gas Flow in a Micro Thruster Based on the Unified Stochastic Particle BGK method Sun , Hu*, Fei*, Sun Chinese Academy of Sciences, Huazhong University of Science and Technology, China	Accurate Modeling and Simulation of NVBCS Based on the Test Particle Monte Carlo Method Sun* , Li, Wang, Wang, Deng, Zhang Anhui University of Science and Technology, China
10:40 – 11:00 03:40 – 04:00		sievens insuluie of technology, USA	Bulk Viscosity of Dilute Gases and Their Mixtures Using Equilibrium Molecular Dynamics	Numerical Cooling Power Predictions for a Dilution Refrigerator via Kinetic Modeling

20:40 - 21:00	Small Solutions of the Einstein-Boltzmann System		Approach Sharma, Kumar*, Pareek, Singh Indian Institute of Technology Kanpur, India	Tantos *, Zilz, Day, Adam, Wernsdorfer Karlsruhe Institute of Technology -Campus Nord, Germany
11:00 - 11:20 04:00 - 04:20 21:00 - 21:20	Bianchi Symmetries Lee* Kyung Hee University, Korea	DSMC Calculation and Analysis of Aerodynamic Drag of VLEO Satellite Jiang , Zhang* Beihang University, China	Molecular Dynamics Simulations on Scattering of High-Speed Ar Molecules on Pt(100) Surface Ye, Hu, Sun* University of Chinese Academy of Sciences, China	State-to-State Simulations of Plane Shock Waves Using Physics-Informed Neural Networks Campoli *, Gorikhovskii, Kunova, Kustova, Melnik Saint Petersburg State University, Russia
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	Local Velocity Grid Conservative Semi-Lagrangian Schemes for the BGK Model Cho*, Boscarino, Russo Gyeongsang National University, Korea	Axial-Azimuthal Numerical Modeling of Hall Thruster Plasmas to Investigate Electron Anomalous Transport Park , Kim, Doh, Lee, Choe* <i>KAIST, Korea</i>	The Effect of Boundary in Nanoscale Phenomena on the Atomic-level Interface Masuduzzaman , Kim* University of Ulsan, Korea	Recent Advances in the Theory of Kinetic Equations of Collision Dynamics Gapyak *, Gerasimenko <i>Taras Shevchenko National University of Kyiv,</i> <i>Ukraine</i>
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00	Well-Posedness and Singularity Formation for	Effect of Thermochemical Nonequilibrium on Supersonic Combustion Liu, Yao*, Sun* University of Chinese Academy of Science, China	Desorption Kinetics for Carbon Surfaces with Defects Chaithanya Kondur , Stephani* University of Illinois at Urbana-Champaign, USA	A Meshfree Arbitrary Lagrangian-Eulerian (ALE) Method for the BGK Model of the Boltzmann Equation with Moving Boundaries Tiwari* , Klar, Russo <i>TU Kaiserslautern, Germany</i>
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Vlasov-Riesz System Choi* Yonsei University, Korea	Mixed Flow Charged Aerodynamics for Small Satellite Orbital Predictions Watson* , Glowacki, Parashar, Capon Victoria University of Wellington, New Zealand	Collision Integrals of Interacting Atoms and Ions - Analysis of Used Approximations and Best Practices Buchowiecki * University of Szczecin, Poland	Comparison of Different Time-Stepping Methods Based on the Simulation of an Electron Gun Ott*, Pfeiffer University of Stuttgart, Germany
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lu	nch	
	Session F3A: Boltzmann Equation and BCK Models: Theory and Numerics III	Session F3B: Space Vehicle	Session F3C: Molecular Dynamics	Session F3D: Multiphase Flows and
	(Chair:)	Aerodynamics and Propulsion III (Chair:)	and Particle Methods III (Chair:)	Granular Flows (Chair:)
13:20 – 13:40 06:20 – 06:40 23:20 – 23:40	Conservative Semi-Lagrangian Methods for Kinetic Equations Russo*	Aerodynamics and Propulsion III (Chair:) Three Dimensional Plasma Discharge in Annular Hall Thruster Channel with Multiple Collision Models in OpenFOAM Anflo, Lee* Seoul National University, Korea	and Particle Methods III (Chair:) Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells	Granular Flows (Chair:) Non-monotonic Heat Flux Trends in a Rarefied Granular Gas Hong*, Morris Purdue University, USA
13:20 - 13:40 06:20 - 06:40 23:20 - 23:40 13:40 - 14:00 06:40 - 07:00 23:40 - 00:00	Conservative Semi-Lagrangian Methods for Kinetic Equations Russo* University of Catania, Italy	Aerodynamics and Propulsion III (Chair:) Three Dimensional Plasma Discharge in Annular Hall Thruster Channel with Multiple Collision Models in OpenFOAM Anflo, Lee* Seoul National University, Korea Performance Study of Intake Device for Atmosphere-Breathing Electric Propulsion Jun* KAIST, Korea	and Particle Methods III (Chair:) Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells Takashi Tokumasu* Tohoku University, Japan	Granular Flows (Chair:) Non-monotonic Heat Flux Trends in a Rarefied Granular Gas Hong*, Morris Purdue University, USA Role of Viscosity in Macroscopic Description of Cluster Formation in Granular Flow Suzuki* The University of Tokyo, Japan
13:20 - 13:40 06:20 - 06:40 23:20 - 23:40 13:40 - 14:00 06:40 - 07:00 23:40 - 00:00 14:00 - 14:20 07:00 - 07:20 00:00 - 00:20	Conservative Semi-Lagrangian Methods for Kinetic Equations Russo* University of Catania, Italy A Mixed Boltzmann-BGK Model for Gas Mixtures Bisi* University of Parma, Italy	Aerodynamics and Propulsion III (Chair:) Three Dimensional Plasma Discharge in Annular Hall Thruster Channel with Multiple Collision Models in OpenFOAM Anflo, Lee* Seoul National University, Korea Performance Study of Intake Device for Atmosphere-Breathing Electric Propulsion Jun* KAIST, Korea Analysis of DSMC Flow Profiles Generated in Microgap Plasma Thrusters Using Different Electrode Plate Configurations Guevara Jelid*, White, Kontis University of Glasgow, UK	and Particle Methods III (Chair:) Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells Takashi Tokumasu* Tohoku University, Japan Determination of Shear and Bulk Viscosity of Dilute Gases and Their Mixtures Using Accurate Inter-molecular Potentials Sivakumar, Sharma, Kumar* Indian Institute of Technology Kanpur, India	Granular Flows (Chair:) Non-monotonic Heat Flux Trends in a Rarefied Granular Gas Hong*, Morris Purdue University, USA Role of Viscosity in Macroscopic Description of Cluster Formation in Granular Flow Suzuki* The University of Tokyo, Japan Surface Polishing Using Particle-laden Gas Flows Garg, Agarwal* Indian Institute of Technology Bombay, India
13:20 - 13:40 06:20 - 06:40 23:20 - 23:40 13:40 - 14:00 06:40 - 07:00 23:40 - 00:00 14:00 - 14:20 07:00 - 07:20 00:00 - 00:20 14:20 - 14:40 07:20 - 07:40 00:20 - 00:40	Conservative Semi-Lagrangian Methods for Kinetic Equations Russo* University of Catania, Italy A Mixed Boltzmann-BGK Model for Gas Mixtures Bisi* University of Parma, Italy Derivation Of BGK Models for Complex Gases from Entropy Minimization Brull* Institut de math'ematiques de Bordeaux, France	Aerodynamics and Propulsion III (Chair:) Three Dimensional Plasma Discharge in Annular Hall Thruster Channel with Multiple Collision Models in OpenFOAM Anflo, Lee* Seoul National University, Korea Performance Study of Intake Device for Atmosphere-Breathing Electric Propulsion Jun* KAIST, Korea Analysis of DSMC Flow Profiles Generated in Microgap Plasma Thrusters Using Different Electrode Plate Configurations Guevara Jelid*, White, Kontis University of Glasgow, UK Design of a Low-Reynolds-Number Airfoil for Mars Exploration Airplane Using a Transition Model Jung, Yee, Jeong* Seoul National University, Korea	and Particle Methods III (Chair:) Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells Takashi Tokumasu* Tohoku University, Japan Determination of Shear and Bulk Viscosity of Dilute Gases and Their Mixtures Using Accurate Inter-molecular Potentials Sivakumar, Sharma, Kumar* Indian Institute of Technology Kanpur, India Air Outflow into Vacuum Periodically Interrupted by Bodies Moving Towards the Jet Yakunchikov* Lomonosov Moscow State University, Russia	Granular Flows (Chair:) Non-monotonic Heat Flux Trends in a Rarefied Granular Gas Hong*, Morris Purdue University, USA Role of Viscosity in Macroscopic Description of Cluster Formation in Granular Flow Suzuki* The University of Tokyo, Japan Surface Polishing Using Particle-laden Gas Flows Garg, Agarwal* Indian Institute of Technology Bombay, India Symmetric Simulations of Droplets with a Particle based Vlasov-Enskog-Solver Tietz*, Pfeiffer, Fasoulas University of Stuttgart, Germany

15:00 – 15:20 08:00 – 08:20 01:00 – 01:20	University of W ⁻ urzburg, Germany	Part 2: Numerical Studies on Taylor Cone Formation and Its Inherent Characteristics for FEEP Thruster Kumar, Kwon, Kwon, Yoh * Seoul National University, Korea	Assessment of Molecular Mean Free Paths and Its Application in Micro/Nanochannel Gas Flows Xie* University of Derby, UK	A Kinetic Derivation of Cahn-Hilliard Fluid Equations Giovangigli* Ecole Polytechnique, France
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40	Relativistic BGK Model for Inert Gas Mixtures Hwang, Lee, Yun* Sungkyunkwan University, Korea	Investigation on the Mode Transition Process in a Three-Dimensional Scramjet Combustor Equipped with a Strut Yan*, Liao, Meng, Huang National University of Defense Technology, China	Stefan-Maxwell Diffusitivies of Gas Mixtures, and Onsager's Regression Hypothesis Zyskin *, Monroe* University of Oxford, UK	Uniform Shear Flow in a Granular Gas of Inelastic and Rough Maxwell Particles Santos* , Kremer Universidad de Extremadura, Spain
15:40 – 16:00 08:40 – 09:00 01:40 – 02:00	BGK Model for Multi-Component Gases Near a Global Maxwellian Bae , Klingenberg, Pirner, Yun* <i>Sungkyunkwan University, Korea</i>		Performance Evaluation of CLL-Kernel Using Accommodation Coefficients Obtained by the Classical and the Correlation Method Nejad* , Nedea, Frijns <i>Eindhoven University of Technology, Netherlands</i>	Kinetic-based Two-phase Flow Model: A Reduced-order Model of Polydisperse Oscillating Droplets with Geometrical Variables Loison*, Pichard, Kokh, Massot Ecole Polytechnique, France
16:00 – 18:00 09:00 – 11:00 02:00 – 04:00		Farewe	ell Party	

Poster Presentations (49, Virtual) ¹KST, CEST, CDT

Time ¹	Tue (July 5th)	Wed (July 6th)	Thu (July 7th)
	Virtual Poster Session T1		Virtual Poster Session Th1
10:20 – 10:30 03:20 – 03:30 20:20 – 20:30	The First DSMC Model Created on COMSOL Multiphysics® Denpoh* Tokyo Electron Technology Solutions Ltd, Japan		Design Exploration on the Mixing Augmentation Mechanism Induced by the Cantilevered Ramp Injector in the Shock-induced Combustion Ramjet Engine Du, Huang *, Yan National University of Defense Technology, China
10:30 – 10:40 03:30 – 03:40 20:30 – 20:40	Accurate Modeling and Simulation of a Rotor-stator Row Based on the Test Particle Monte Carlo Method Sun* , Zhang, Han, Zhao, Zhang, Han Northeastern University, China		Effect of High-Altitude Atmosphere on Resonant Rossiter Frequencies of Cavity Flow Uthpala, Lee, Myong, Lee* <i>Gyeongsang National University, Korea</i>
10:40 – 10:50 03:40 – 03:50 20:40 – 20:50	On the Role of Finite Size of Vehicles and Multilane Highways in the Traffic Flow Fundamental Diagram Méndez* , Marques Jr, Velasco Universidad Aut'onoma Metropolitana- Cuajimalpa, Mexico		Calculation of Newtonian Aerodynamic Coefficients with Mesh Refinements Using Kernel Interpolation Jo, Furudate* Chungnam National University, Korea
10:50 – 11:00 03:50 – 04:00 20:50 – 21:00	Minimum of the Normal Momentum Flux Transferred to the Inner Cylinder in the Rarefied Couette Flow with a Fixed Outer Cylinder Abramov, Alexandrov, Buzykin, Butkovskii * <i>Central Aerohydrodynamic Institute, Russia</i>		Reflected Shock Data Interpretation with the DSMC Method Wysong* , Streicher, Krish, Hanson, Gimelshein <i>Air Force Research Laboratory, USA</i>
11:00 – 11:10 04:00 – 04:10 21:00 – 21:10	Rarefied Gas Flow Past a Flat Plate Abramov, Butkovskii* , Buzykin <i>Central Aerohydrodynamic Institute, Russia</i>		Numerical Investigation of Pyrolysis Gas Interaction with Hypersonic Reentry Flow-Field Appar , Bajpai, Naspoori, Kumar* <i>Indian Institute of Technology Kanpur, India</i>
11:10 – 11:20 04:10 – 04:20 21:10 – 21:20	3D Density Field of Shock Tube by Background Oriented Schlieren Technique and Physics Informed Neural Networks Hur , Lee* Seoul National University, Korea		A Second Order Velocity Slip and Temperature Jump Boundary Condition for Thermodynamic Non Equilibrium Flows Liu*, Wu Southern University of Science and Technology, China
11:20 – 11:30 04:20 – 04:30 21:20 – 21:30	A Multi-Prediction Implicit Scheme for Gas Flow in All Flow Regimes Yuan*, Wu, Liu, Zhong Southern University of Science and Technology, China		Design and Optimization of Hypervelocity and High-Enthalpy Nozzles Wang* , Jiang <i>Chinese Academy of Sciences, China</i>
11:30 – 11:40 04:30 – 04:40 21:30 – 21:40	Unsteady-state Method for Calculating Steady Subsonic and Transonic External Rarefied Gas Flows Abramov, Butkovskii *, Buzykin <u>Central Aerohydrodynamic Institute, Russia</u>		Effect of Speed Ratio Increase on Pressure Measurement for Hypersonic Rarefied Gas Flows Ozawa*, Suzuki, Fujita Japan Aerospace Exploration Agency, Japan
11:40 – 11:50 04:40 – 04:50 21:40 – 21:50	Axisymmetric Simulation of Interaction of Rocket Exhaust with Lunar Surfaces Shaik*, Gavasane, Mankodi, Bhandarkar Indian Institute of Technology Bombay, India		Surface Detect and AI2O3-Nanoparticle Bombardment on Graphite Surface Jeon, Kwon, Lee, Park* Gyeongsang National University, Korea
11:50 – 12:00 04:50 – 05:00 21:50 – 22:00	The Knudsen Number Effect of Hypersonic Flow over a Re-Entry Capsule Gokul, Malaikannan* <u>SRM Institute of Science and Technology, India</u>		Extending Low-rank Radiation Transport Methods and Exploring Partial Frequency Re-distribution Applications Cambier* , Taitano, Abrantes <i>Air Force Research Laboratory, USA</i>
12:00 – 12:10 05:00 – 05:10 22:00 – 22:10	Numerical Investigation of Thermal Creep like Flow in Micro- Channels with Different Temperature Quadrilaterals Han* , Wang, Zhang, Zhang <i>Northeastern University, China</i>		Runtime based Weighted N-way Partitioning Scheme for Direct Simulation Monte Carlo Codes Mankodi* Indian Institute of Technology Guwahati, India
12:10 – 12:20 05:10 – 05:20 22:10 – 22:20	Non-equilibrium Shock Wave Structure in Supersonic Granular and Molecular Gas Bajpai , Appar, Khan, Kumar, Kumar* <i>Indian Institute of Technology Kanpur, India</i>		Energy Redistribution in DSMC Using Modified Quantum-Kinetic Model Chou* , Pan National Taiwan University, Taiwan

12:20 – 13:20 05:20 – 06:20 22:20 – 23:20	Lunch & Poster (On-site)	Lunch	Lunch & Poster (On-site)
	Virtual Poster Session T2		Virtual Poster Session Th2
13:20 – 13:30 06:20 – 06:30 23:20 – 23:30	Numerical Analysis of Flow Field according to Nozzle Shape in LPCVD Furnace Ji, Sohn, Ko* Sungkyunkwan University, Korea		Effect of Velocity Slip and Temperature Jump at the Fluid-Solid Interface in a Coupled Chemically Reacting Flow Appar , Sivakumar, Kumar* Indian Institute of Technology Kanpur, India
13:30 – 13:40 06:30 – 06:40 23:30 – 23:40	Simulating the Effect of Background Gas in Stoichiometry of Film Produced by Pulsed Laser Deposition Mata* , Dasallas, Garcia University of the Philippines Diliman, Philippines		Hypersonic Nonequilibrium Prandtl-Meyer Expansion Khraibut* , Gai University of New South Wales, Australia
13:40 – 13:50 06:40 – 06:50 23:40 – 23:50	G13-Based Moment Gas Kinetic Solver for Steady and Unsteady Rarefied flows: Discrete and Explicit Form Liu*, Shu National University of Singapore, Singapore		Analysis of Continuum Breakdown of Jet Interaction with Rarefied Flow Yang, Song, Wang, Sun* Chinese Academy of Sciences, China
13:50 - 14:00 06:50 - 07:00 23:50 - 00:00	Numerical Simulation for OLED Manufacturing Process in High Vacuum System Park *, Seo, Lee, Seo, Shon <i>Metariver Technology Co., Korea</i>		Supersonic Gas Flow into a Vacuum through a Forward and Backward Facing Step in a Wide Range of Rarefaction Sazhin* Ural Federal University, Russia
14:00 – 14:10 07:00 – 07:10 00:00 – 00:10	Lagrangian-Lagrangian Simulation of Dusty Gas Flow Past a Cylinder Bajpai, Bhavsar, Appar, Bhateja, Kumar* Indian Institute of Technology Kanpur, India		<i>Kashkovsky*</i> , Kudryavtsev, Shershnev <i>Khristianovich Institute of Theoretical and Applied Mechanics SB</i> <i>RAS, Russia</i>
14:10 – 14:20 07:10 – 07:20 00:10 – 00:20	Implementation of Test Particle Monte-Carlo Codes in the Development of a Metal Foil Pump Kathage* , Luo, Day <i>Karlsruhe Institute of Technology, Germany</i>		Non-stationary Rarefied Gas Flow in a Channel with Oscillating Barriers in a Wide Range of Knudsen Numbers Kosyanchuk * Lomonosov Moscow State University, Russia
14:20 – 14:30 07:20 – 07:30 00:20 – 00:30	On Some Recent Advances in the Kinetic Theory of Collisional Dynamics Gapyak*, Gerasimenko Taras Shevchenko National University of Kyiv, Ukraine		Local Nonequilibrium Molecular Distribution Function Reconstruction from the Continuum Models Timokhin* , Rukhmakov, Bondar <i>Lomonosov Moscow State University, Russia</i>
14:30 – 14:40 07:30 – 07:40 00:30 – 00:40	Variational Approach to Thermal Creep Flow in Microchannels on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules and General Boundary Conditions Nguyen*, Lorenzani FPT University, HCM, Vietnam		The Effect of Source Pressure on a Coating Process Using the Aerosol Deposition Method Agir* , Cao, White, Kontis <i>University of Glasgow, UK</i>
14:40 – 14:50 07:40 – 07:50 00:40 – 00:50	Lattice Boltzmann Solver for One-dimensional Computational Hemodynamics: Applications to Modeling of Pressure Losses in Arterial Networks Ilyin*, Kochergin, Stroganov Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Russia		Hypersonic Boundary Layer Flow with an Obstacle in the Near Continuum Regime Chen , Stemmer* <i>Technical University of Munich, Germany</i>
14:50 – 15:00 07:50 – 08:00 00:50 – 01:00	A Fick's Law Recovering Relaxation BGK Operator for General Mixtures of Gases Brull, Guillon* , Thieullen Institut de Mathématiques de Bordeaux, France		Accommodative Dependence of the Photophoresis of a Fine Aerosol Particle Chernyak, Sograbi* <i>Ural Federal University, Russia</i>
15:00 – 15:10 08:00 – 08:10 01:00 – 01:10	Homogenenous States of Granular Gases of Inelastic Hard Spheres under Nonlinear Drag Megıas, Santos* Universidad de Extremadura, Spain		GPU Code Implementation for Numerical Solving of Multidimensional Kinetic Equations Malkov *, Kudryavtsev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia

15:10 - 15:20 08:10 - 08:20 01:10 - 01:20Deep Learning Methods for CH4 And CO2 Detection in Near and Shortwave Infrared Spectral Ranges Jang, Kim* Inha University, Korea	Comparative Analysis of Numerical Schemes for the Vlasov Kinetic Equation Malkov* , Kudryavtsev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia
15:20 - 15:30	Granular Flow past an Elliptical Obstacle
08:20 - 08:30	Bhavsar, Bajpai, Khan, Kumar* Indian Institute of Technology Kanpur, India