RGD32 Program (Hybrid, Real-time; Version 3; 24 May 2022)

¹KST, CEST, CDT

Time ¹	N	Mon (J	uly 4th)	Time		Tue (Ju	ıly 5th)			Wed (J	uly 6th))		Thu (J	uly 7th))	Time		Fri (Ju	ly 8th)	
07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regist	ration		07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regist	tration			Regis	tration			Regis	tration		07:30 – 08:00 00:30 – 01:00 17:30 – 18:00		Regis	ration	
Halls	A	В	C	D	Halls	A	В	C	D	A	В	C	D	A	В	C	D	Halls	A	В	C	D
08:00 - 10:00 01:00 - 03:00 18:00 - 20:00	T01 Boltzm I I (K06)	T03 Numeric I	T05 DSMC I	T16 Shock	08:00 – 10:00 01:00 – 03:00 18:00 – 20:00	S02 Rich Memorial I	T04 PDE II (K10)	T17 Gas- Surf I	T5,24 DSMC & HPC	T02 Kinetic III (K07)	S06 Porous Media	T12 Reacting I	T19,22 Jet Plume Vapor	T14 Hyper Veh I	S13 eProp I (K08)	T05 DSMC VI	S16 Hyper Flow I	08:00 - 10:00 01:00 - 03:00 18:00 - 20:00	S09 BGK I	T15 Space Veh I	T06 MD I (K15)	T18 Vacuum I
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee			10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee					e Break				Break		10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee		
10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	T01 Boltzm II	T03 Numeric II	T05 DSMC II	T21 Plasma I	10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	S03 Rich Memorial II	S18 Entropy Closure (K05)	T17 Gas- Surf II	T5 DSMC IV	S12 Emerg- ent	T09,11 Multiph Shale	T07,08 Multisc, Micro, Nano I	S15 Dust Lunar	T14 Hyper Veh II	S14 eProp II (K02)	T05 DSMC VII	S17 Hyper Flow II	10:20 – 12:20 03:20 – 05:20 20:20 – 22:20	S10 BGK II	T15 Space Veh II (K12)	T06 MD II	T1,2,3,18 Vacuum II
12:20 - 13:20 05:20 - 06:20 22:20 - 23:20		Luı		 	12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		h & Pos	`	ĺ		Lu	nch			h & Pos		<u> </u>	12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lu	nch	
13:20 – 14:40 - 06:20 – 07:40	Opening Grad	and We			13:20 – 15:20 06:20 – 08:20 23:20 – 01:20	T02 Kinetic I	T13 Experiment (K03)	S07 Bulk Visco I	T5,12 Reacting & DSMC					T01 Boltz III (K11)	T03 Numeric III	S04 Nano I (K01)	T12 Reacting II	13:20 – 16:00 06:20 – 09:00 23:20 – 02:00	S11 BGK III	T15 Space Veh III	T06 MD III (K13)	T10,11 Multiph Granul
14:40 – 15:00 07:40 – 08:00 00:40 – 01:00		Coffee			15:20 – 15:40 08:20 – 08:40 01:20 – 01:40		Coffee	Break							Coffee	Break		16:00 – 18:00 09:00 – 11:00 02:00 – 04:00		Farewe	ll Party	7
15:00 – 17:00 08:00 – 10:00 01:00 – 03:00	S01 Reese Memorial	T04 PDE I	T05 DSMC III	T21 Plasma II (K04)	15:40 – 16:40 08:40 – 09:40 01:40 – 02:40	Thom	nas Lect (P	3)	bachs)		Excu	ırsion		GNU-F	ERC Le	cture (F	Eu) <mark>(P4</mark>)					
17:00 - 17:10		Bre	eak		16:40 - 16:50		Bro	eak						Break								
17:10 – 18:10 10:10 – 11:10 03:10 – 04:10	Bird I	_ecture	(Levin	ı) <mark>(P2)</mark>	16:50 – 18:50 09:50 – 11:50 02:50 – 04:50	T02 Kinetic II	T14,16,23 Hyper Shock	S08 Bulk Visco II (K09)	T5 DSMC V					T01 Boltz IV	T03 Numeric IV (K14)	S05 Nano II	T07,08 Multisc, Micro, Nano II					
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00		Rece	ption		19:00 – 21:00 12:00 – 14:00 05:00 – 07:00	IAC	Meetin	g / Nex	tGen						Ban	quet						

Hybrid halls (A-Diamond, B-Vivace, C-Allegro, D-Andante) On-site (In-person) & Virtual Poster

Time	Tue (July 5th)	Wed (July 6th)	Thu (July 7th)
10:20 - 12:20	Virtual Poster Session T1		Virtual Poster Session Th1
12:20 – 13:20	Lunch & Poster (On-site)	Lunch	Lunch & Poster (On-site)
13:20 - 15:30	Virtual Poster Session T2	Excursion	Virtual Poster Session Th2

		Keynote Lectures
K01	Murat Barisik	"Law of the Nano-wall" in Nano-channel Gas Flows
K02	Wonho Choe	Unique Physical Features of Cylindrical Hall Thruster Plasmas for Low Power Operation
K03	Stéphane Colin	Molecular Tagging – an Experimental Technique for Velocimetry and Thermometry in Internal Rarefied Gas Flows
K04	Zoltan Donko	Kinetic Effects in Charged Particle Transport, Gas Breakdown, and Electrical Discharges
K05	Clinton Groth	Development, Numerical Solution, and Application of Maximum-Entropy-Inspired Moment Closures for Non-Equilibrium Gaseous Flows with Shocks
K06	Yan Guo	Geometric Correction in Knudsen Layer Expansion
K07	Seung Yeal Ha	A Kinetic Approach for Collective Dynamics
K08	Kentaro Hara	Physics-based and Data-driven Models of Low- temperature Plasmas for Aerospace Applications
K09	Elena Kustova	New Challenges in Modeling Non-equilibrium Carbon Dioxide Flows
K10	Chang Liu	A Brief Review of the Direct Modeling Method: Multiscale Scheme, Unified Preserving Property, and Applications
K11	Duncan Lockerby	Simulating Low-speed Rarefied Flows around 3D Particulate and Droplets
K12	Jason Rabinovitch	Mission Concept
K13	Takashi Tokumasu	Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells
K14	Lei Wu	Efficient and Accurate Deterministic Solver for the Boltzmann Equation: The Fast Spectral Method and General Iterative Scheme
K15	Yonghao Zhang	Effect of Confinement on Non-equilibrium Flow of Dense Gases

	Plenary Lectures					
P01	Tai-Ping Liu (Grad Lecture)	Solving Boltzmann Equation, Green's Function Approach				
P02	Wim Ubachs (Thomas Lecture)	Light Extinction, Rayleigh-Brillouin Scattering and Absorption in the Earth's Atmosphere, and in Dilute and Dense Gases				
P03	Deborah Levin (Bird Lecture)	Exploring the Physics of Multiscale Flows at the Molecular Level				
P04	Byung-Chan Eu (GNU-ERC Lecture)	Thermodynamically Consistent Generalized Hydrodynamic Theory of Flows Far Removed from Equilibrium				
	C					
C01		A Sessions Memorial Session for Jason Reese				
S01 S02, S03	Yonghao Zhang Igor Adamovich, Sergey Macheret, Deborah Levin	Memorial Session for Bill Rich I, II				
S04, S05	BoHung Kim	Nanoscale Transport Phenomena at Interfaces I, II				
S06	Alina Alexeenko, Irina Graur Martin	Rarefied Flows in Porous Media				
S07, S08	Elena Kustova, Rakesh Kumar	Bulk Viscosity and Relaxation Processes I, II				
S09, S10, S11	Seok-Bae Yun	Boltzmann Equation and BGK Models: Theory and Numerics I, II, III				
S12	Doheon Kim, Seok-Bae Yun	Recent Advances on Emergent Behaviors and Collective Dynamics				
S13, S14	Eunji Jun	Electric Propulsion I, II				
S15	Jae Hyun Park, Kyun Ho Lee	Dust in Lunar Exploration				
S16, S17	Gisu Park, Jaegang Kim	Hypersonic Flows I, II				
S18	Clinton Groth, James McDonald	Entropy-Based Moment Closure Methods for Kinetic Equations				

	Top	oics	
T01	Boltzmann and Related Equations	T15	Space Vehicle Aerodynamics and Propulsion
T02	Kinetic Theory for Gases and Complex Systems	T16	Shock Waves in Rarefied Flows
Т03	Numerical Methods for Kinetic Equations	Т17	Gas-Surface Interactions (including Condensation) and Slip Flows
Т04	PDE-based Computational Methods for Non-equilibrium Flows	T18	Vacuum Technology
Т05	DSMC and Related Simulations	T19	Vapor Deposition Processes and Simulation
T06	Molecular Dynamics and Particle Methods	T20	Molecular Beams and Collisions
T07	Mesoscale and Multiscale Modeling	T21	Plasma Flows and Processes
T08	Micro- & Nano-scale Flows and Heat Transfer	T22	Jets, Plumes and Surface Interaction
T09	Shale Gases and Porous Media Flows	T23	Radiation and Astrophysics
T10	Granular Flows and Aerosols	T24	High-performance Computing in RGD
T11	Multiphase Flows and Kinetic Modeling		
T12	Non-equilibrium Reacting Flows		
T13	Experimental Techniques for Non-equilibrium Flows		
T14	Hypersonic Vehicles, Facilities, and Diagnostics		

Time		Mon (July 4th)							
	Room A	Room B	Room C	Room D					
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Regis							
	Session M1A: Boltzmann and Related Equations I (Chair:)	Session M1B: Numerical Methods for Kinetic Equations I (Chair:)	Session M1C: DSMC I (Chair:)	Session M1D: Shock Waves in Rarefied Flows (Chair:)					
08:00 – 08:20 01:00 – 01:20 18:00 – 18:20	Geometric Correction in Knudsen Layer Expansion	Physics-Informed Neural Networks for the Vlasov Equation Hanquist, Florio, Schiassi, Furfaro* University of Arizona, USA	In-Situ, Conservative Particle Merging With Octree Sorting Huerta*, Martin, Eckhardt Jacobs Engineering Group, USA	Molecular Diffusivity Based Constitutive Relations for Rarefied Conditions Reddy*, Dadzie, Tomy Heriot-Watt University, UK					
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Yan Guo* Brown University, USA	Verification of a Discontinuous Galerkin Fast Spectral Solver for the Full Boltzmann Equation Adhikari*, Morton, Hu, Alexeenko Purdue University, USA	A Computational Study on Thermally Induced Knudsen Forces for a Non-Contact Controlling Device Otic*, Ohara, Yonemura Tohoku University, Japan	Low Reynolds Number Effect on Hypersonic Flow Over a Hemisphere with Counter-flow Jet Yoon*, Suzuki University of Tokyo, Japan					
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Simulations of Flow Past a Blunt Body in an Inert Binary Gas Mixture in Rotational Non-Equilibrium Using DSMC and the Generalized Boltzmann Equation Agarwal*, Qian Washington University, USA	Assessment of Kinetic Fokker-Planck Methods for Hypersonic Rarefied Flows Kim , Jun* <i>KAIST, Korea</i>	GSIS-LVDSMC for BGK Equation Luo, Li, Wu* Southern University of Science and Technology, China	On the Conditions of Clusters Penetration beyond the Limits of a Supersonic Jet Dubrovin* , Zarvin, Bondar, Yaskin, Kalyada, Dering Novosibirsk State University, Russia					
09:00 – 09:20 02:00 – 02:20 19:00 – 19:20	Comparison of Numerical Solutions of Rarefied Hypersonic Gas Flows Using Boltzmann-based Zero-, First-, and Second-Order Constitutive Models Singh*, Battiato, Myong Nanyang Technological University, Singapore	General Synthetic Iterative Scheme for Unsteady Phonon Boltzmann Equation with Dual Relaxation Times Liu, Su, Wu* Southern University of Science and Technology, China	Hydrodynamics, Normal-stress Differences and Heat Transport in Rarefied Pressure Driven Poiseuille Flow Ravichandir*, Alam Jawaharlal Nehru Centre for Advanced Scientific Research, India	A Computational Investigation of High- Temperature Effect on the Type IV Shock Interaction Peng*, Hu, Z. Han, G. Han, Jiang University of Chinese Academy of Sciences, China					
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Comparative Study of Model Kinetic Equations and the Boltzmann Equation in the Shock Wave Structure Problem Poleshkin*, Kudryavtsev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Linearly Implicit Time Integration of Vibrational Master Equation Using Automatic Differentiation Petty, Byrne* University of New South Wales, Australia	Relativistic DSMC Collisions in EMPIRE McDoniel*, Moore, Cartwright Sandia National Laboratories, USA	Transition of The Regular to Mach Reflection of Shock Waves in Steady Rarefied Flows Shoev*, Timokhin Institute of Theoretical and Applied Mechanics SB RAS, Russia					
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	A Fast Fourier Spectral Method for the Non-cutoff Boltzmann Collision Operator Qi*, Hu City University of Hong Kong, Hong Kong PRC	A GPU Accelerated Unified Gas-Kinetic Wave- Particle Algorithm for Rarefied Flows Yu , Xie*, Tian, Ren, Li National University of Defense Technology, China	Rarefied Atmospheric Gas Effects on The Aerodynamics of Super Low Altitude Satellites Yu, Vignesh Ram, Yoon, Kim* Sejong University, Korea	Application of the Mott-Smith Approximation to the Regular Shock-Wave Reflection Problem Timokhin*, Kudryavtsev, Bondar Institute of Theoretical and Applied Mechanics SB RAS, Russia					
10:00 - 10:20 03:00 - 03:20 20:00 - 20:20		Coffee Break							
	Session M2A: Boltzmann and Related Equations II (Chair:)	Session M2B: Numerical Methods for Kinetic Equations II (Chair:)	Session M2C: DSMC II (Chair:)	Session M2D: Plasma Flows and Processes I (Chair:)					
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	Physics-informed Neural Network and Functional Interpolation for Rarefied-Gas Dynamics in the BGK Approximation De Florio, Schiassi, Barichello, Ganapol, Furfaro* University of Arizona, USA	A Conservative Multidimensional Vlasov Algorithm with Curvilinear Moving Phase-Space Grid Taitano*, Liu, Chacon Los Alamos National Laboratory, USA	Trajectory Estimation Model of Space Debris with Gravitational and Drag Perturbations Preethi , Appar, Kukilaya*, Kumar* Indian Institute of Technology Kanpur, India	Real-Time State Estimation for Plasma Chemistry Applications Greve*, Hara Texas A&M University, USA					
10:40 – 11:00 03:40 – 04:00 20:40 – 21:00	Source-sink-type Condition for Slightly Rarefied Gas Flow Driven by a Discontinuous Wall Temperature Taguchi*, Tsuji	New Fast Numerical Method for Rarefied Gas Simulation by Spherical Design and Traveling Finite Volume	A Hybrid DSMC-continuum Formulation for Jet Expansion into Rarefied Flows Tumuklu, Bellan*, Hanquist	A Kinetic-continuum Method Combining the Direct Simulation Monte-Carlo with Collision- Radiation Model for Simulation of Laser-Induced					

	Kyoto University, Japan	Sugimoto*, Morikawa	California Institute of Technology, USA	Plasma Plumes					
	2 2 2	Kyoto University, Japan		Volkov*, Stokes, Lin					
				University of Alabama, USA					
11:00 - 11:20 04:00 - 04:20 21:00 - 21:20	Global In Time Existence of Solutions With L^1- Initial Data for The Revised Enskog Equation Polewczak* California State University, USA	General Synthetic Iterative Scheme for Steady Solutions of Multi-Scale Polyatomic Gas Flows Zeng, Wu* Southern University of Science and Technology, China	Plume Analysis for VISORS Mission Karis* , Kazarin, Chinnappan, Alexeenko <i>Purdue University, USA</i>	Two-Dimensional Axisymmetric Fluid Modeling of Low-Pressure Capacitively Coupled Plasma Using an Extended Temporal Multi-Scale Algorithm Wu*, Gu, Hu National Yang Ming Chiao Tung University, Taiwan ROC					
11:20 - 11:40 04:20 - 04:40 21:20 - 21:40	An Attempt on the ES-Model-Based Construction of a Kinetic Equation for a Dense Gas Miyauchi* , Takata, Hattori <i>Kyoto University, Japan</i>	On the Five-Moment Maximum Entropy System of One-Dimensional Boltzmann Equation Li, Fan, Zheng* Peking University, China	On The Convergence of the Symmetrized and Simplified Bernoulli Trial (SSBT) Collision Scheme in Shock Wave Problem Javani, Roohi*, Taheri Xi'an Jiaotong University, China	On the Mechanism of Cluster Luminescence in the External Field of a Supersonic Flow Konstantinov, Zarvin*, Dubrovin, Kalyada, Yaskin, Dering Novosibirsk State University, Russia					
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00	Model Two-Particle Kinetic Equation for Pairs of Quasiparticles Saveliev* Fesenkov Astrophysical Institute, Kazakhstan	Data-Driven Nonlinear Compression and Denoising Martin*, Huerta, Wong, Eckhardt U.S. Army Research Office, USA	Re-Entry Trajectory Estimation for Space Debris in Low Earth Orbit Park*, Nam, Kim, Kim Agency For Defense Development, Korea	On the Role of Rotational Relaxation in Oxygen Discharges Huang*, Hu, Sun Chinese Academy of Sciences, China					
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Thermally Driven Flow of a Dense Gas in a Nanochannel Hattori* <i>Kyoto University, Japan</i>	Kinetic Simulation of Pulsed Evaporation into Low-Pressure Gas: Model Kinetic Equation vs DSMC Titarev*, Morozov Federal Research Center, Russia	Coupled Kinetic-Continuum Modeling of Re- Entry Vehicle Plasma Environment Shevyrin*, Bondar Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Investigation of Hypersonic Plasma Sheath Effects on RF Degradation Using DSMC Method Agarwal*, Derubertis* Washington University, USA					
12:20 - 13:20 05:20 - 06:20 22:20 - 23:20		Lunch							
13:20 - 14:40		Opening and Welcome Remarks							
06:20 - 07:40		Grad I	Lecture						
23:20 - 00:40	(Solving Boltzn	nann Equation, Green's Function Approach	, Tai-Ping Liu*, Academia Sinica and Stan	ford University)					
14:40 – 15:00 07:40 – 08:00 00:40 – 01:00		Coffee	e Break						
	Session M3A: Memorial Session for Jason Reese (Chair:)	Session M3B: PDE-based Computational Methods for Non- equilibrium Flows I (Chair:)	Session M3C: DSMC III (Chair:)	Session M3D: Plasma Flows and Processes II (Chair:)					
15:00 - 15:20 08:00 - 08:20 01:00 - 01:20	Flow Past a Square Cylinder in the Slip and Early Transition Regime: A Computational Study by Coupling Kinetic and Extended Thermodynamic Methods Gu*, Yang, Emerson, Zhang	Numerical Analysis of Slow Uniform Flow past a Circular Disk with Sharp Edge Tomita , Taguchi*, Tsuji <i>Kyoto University, Japan</i>	Investigation of the Effect of Pseudo-Random Number Generating Algorithms on DSMC Simulation Sengupta, Mankodi, Myong* Gyeongsang National University, Korea	Kinetic Effects in Charged Particle Transport, Gas Breakdown, And Electrical Discharges					
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40	STFC Daresbury Laboratory, UK	Reduced-order Modeling of a Collisional- Radiative, Euler Fluid System Through Low-Rank Tensor Decomposition Abrantes*, Taitano, Cambier Air Force Research Laboratory, USA	Similarity Parameters in the Longitudinal Cylindrical Couette Problem: From the Continuous to Free Molecular Abramov, Alexandrov, Butkovskii* Central Aerohydrodynamic Institute, Russia	Zoltan Donko* Wigner Research Centre for Physics, Hungary					
15:40 – 16:00 08:40 – 09:00 01:40 – 02:00	Gas Rarefaction Effects in a Two-Dimensional Acoustic Micro-Resonator Manela*, Ben-Ami Technion - Israel Institute of Technology, Israel	Entropy-based Ansatz for Galerkin Approximations of the Boltzmann Equation Abdelmalik*,Gamba, Kessler, Rjasanow Eindhoven University of Technology, Netherlands	Thermophoretic Force on Micron-Sized Particles in Rarefied Gas Conditions Reinartz*, Staso, Shestakov, Kunnen, Toschi, Clercx Eindhoven University of Technology, Netherlands	A New Class of Second-order Uniformly Asymptotic-preserving Imex Schemes for Kinetic and Hyperbolic Balance Laws with Stiff Relaxation Pichard*, Reboul, Massot Ecole polytechnique					

16:00 - 16:20 09:00 - 09:20 02:00 - 02:20	Drag on a Sphere over a Range of Knudsen Numbers and Speed Ratios White*, Cao, Agir, Vasiliadis	On Moment Approximations of Boltzmann Equation: A Generic Moment System and Its FEM-Based Numerical Solution Christhuraj*, Torrilhon RWTH Aachen, Germany	IXV Vehicle, Comparison of Aerothermodynamic DSMC Results and Flight Data in Rarefied Regime Schouler*, Prevereaud, Mieussens ONERA, France	Energy and Momentum-Preserving Particle Scheme for the Magnetized Poisson-Vlasov- Fokker-Planck Equation Chung*, Fei, Gorji, Jenny Swiss Federal Institute of Technology, Switzerland			
16:20 – 16:40 09:20 – 09:40 04:20 – 02:40	University of Glasgow, UK	Thermal Analysis of Mildly Rarefied Gaseous Flows through Isothermally Heated Circular Pipe Jha*, Agrawal	Different Approaches for Simulation of Convective and Radiative Heat Fluxes in Planetary Entry Problems Istomin*. Kustova, Prutko	Moment Models for Neutral Particles in the Plasma Edge Cusicanqui, Koellermeier* , Maes, Samaey			
16:40 – 17:00 09:40 – 10:00 02:40 – 03:00	Multiscale Modelling and Computation of Hypersonic Gas Flows and Gas-Surface Interactions Zhang* , Deng, Tian, Feng, Fei <i>Beihang University, P.R. China</i>	Indian Institute of Technology Bombay, India Domain Decomposed Hyper-reduction for Steady, Inviscid Hypersonic Flow Joshi*, Choi Virginia Polytechnic Institute and State University, USA.	Saint Petersburg State University, Russia Energy Redistribution in DSMC Using Modified Quantum-Kinetic Model Chou*, Pan National Taiwan University, Taiwan	University of Groningen, Netherlands Fluid Simulations of Partially Magnetized Plasmas: Advanced Numerical Methods and Comparison to Kinetic Simulations Reboul*, Massot, Laguna, Anne Bourdon CNRS, France			
17:00 – 17:10			eak				
17:10 – 18:10 10:10 – 11:10 03:10 – 04:10	(Exploring the Physics	Bird Lecture (Exploring the Physics of Multiscale Flows at the Molecular Level, Deborah Levin*, University of Illinois at Urbana-Champaign)					
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00	Reception						

Time	Tue (July 5th)						
	Room A	Room B	Room C	Room D			
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)	Registration						
	Session T1A: Memorial Session for Bill Rich I (Chair:)	Session T1B: PDE-based Computational Methods for Non- equilibrium Flows II (Chair:)	Session T1C: Gas-Surface Interactions (including Condensation) and Slip Flows I (Chair:)	Session T1D: DSMC and HPC (Chair:)			
08:00 – 08:20 01:00 – 01:20 18:00 – 18:20	Detecting Order in Complexity of Molecular Collisions: Historical Perspective and Future Outlook Adamovich*, Rich	A Brief Review of the Direct Modeling Method: Multiscale Scheme, Unified Preserving Property, and Applications	Gas Scattering on Porous Surfaces and Its Impact on Rarefied Gas Transport in Shale Chen*, Jun, Li, Datta, Docherty, Gibelli, Borg University of Edinburgh, UK	Impact Quantification of an Harmonic Oscillator Model for a Flow over a Sphere Civrais*, White, Steijl University of Glasgow, UK			
08:20 – 08:40 01:20 – 01:40 18:20 – 18:40	Ohio State University, USA Development and Application of the Modified	Chang Liu* Hong Kong University of Science and Technology, Hong Kong PRC	Effect of Speed Ratio Increase on Pressure Measurement for Hypersonic Rarefied Gas Flows Ozawa*, Suzuki, Fujita Japan Aerospace Exploration Agency, Japan	On the Unsteady Behavior of a Hypersonic Flow over a Double Cone Using Kinetic Methods Karpuzcu*, Levin, Cerulus, Theofilis University of Illinois, Urbana-Champaign, USA			
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Marrone and Treanor Chemical Kinetics Model Chaudhry*, Boyd , Candler University of Colorado Boulder, UK	Application of a 10-Moment Fluid Model to Transition Neutral and Plasma Flows Kuldinow* , Hara Stanford University, USA	Modeling Molecular Outgassing Transport and Deposition for Spacecraft Operating in Vacuum Anderson*, Alred, Hoey Jet Propulsion Laboratory, USA	State of the SPARTA DSMC Code Moore*, Plimpton Sandia National Laboratories, USA			
09:00 – 09:20 02:00 – 02:20 19:00 – 19:20	Vibrational Kinetics in 2D High Enthalpy Flows Using GPU's Colonna*, Bonelli, Ninni, Pascazio CNR-ISTP, Italy	Investigation on the Validity of a Rarefied Gas Flow Model Based on the LBM as an Extended Navier-Stokes Equation Solver for Porous Media Tucny*, Vidal, Leclaire, Bertrand Research Center in Industrial Flow Processes (URPEI), Canada	Stochastic Multiscale Simulation Method for Heterogeneous Catalysts: Concurrent Coupling of Kinetic Monte Carlo and Fluctuating Hydrodynamics Kim*, Nonaka, Bell, Garcia University of California, USA	3D-DSMC Method Applied to Coma Generation of Cometary Nuclei: Application to Comet 67P/Churyumov-Gerasimenko Pinzón-Rodríguez*, Gerig, Marschall, Herny, Thomas University of Bern, Switzerland			
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Theoretical Models of Chemical Reactions in	Three-dimensional Generalized Finite Difference Method for Thermal Evolution and Rarefied Flows in Porous Small Planetary Bodies Zhang*, Hartzell University of Maryland, USA	Measurements of Thermal and Tangential Momentum Accommodation Coefficients on a Solid Sample Surface in High Knudsen Number Flows Yamaguchi*, Osada, Endo Nagoya University, Japan	On the Microscopic Characteristics of Hydrogen- oxygen Combustion Based on the DSMC Method Ma, Yang*, Sun Chinese Academy of Sciences, China			
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Vibrational-Translational Nonequilibrium Macheret* Purdue University, USA	Modeling of High Speed Gas Flows Using Inhouse Computational Framework based on Direct Flux Reconstruction Suman, Singh, Ujwal, Ramesh, Kumar* Indian Institute of Technology Kanpur, India	Development of an Effective Finite-Rate Oxidation Model for Nusil-coated Charred Carbon Preform Ablators Swaminathan Gopalan*, Borner Analytical Mechanics Associates Inc. at NASA Ames Research Center, USA	An Open Source USP Code within the Framework of SPARTA for the Simulation of Multiscale Gas Flows Feng, Tian, Zhang* Beihang University, China			
10:00 – 10:20 03:00 – 03:20 20:00 – 20:20		Coffee Break					
	Session T2A: Memorial Session for Bill Rich II (Chair)	Session T2B: Entropy-Based Moment Closure Methods for Kinetic Equations (Chair:)	Session T2C: Gas-Surface Interactions (including Condensation) and Slip Flows II (Chair:)	Session T2D: DSMC IV (Chair:)			
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	Validation of Vibrational Kinetics in Molecular Plasmas Guerra*, Silva, C. Dias, Fromentin, Baratte, Guaitella Instituto de Plasmas e Fusao Nuclear, Instituto	Development, Numerical Solution, and Application of Maximum-Entropy-Inspired Moment Closures for Non-Equilibrium Gaseous Flows with Shocks Clinton Groth*	Molecular Dynamics Study of Gas Surface Interactions on B-Cristobalite Surface Naspoori , Kumar*, Kammara, Appar Indian Institute of Technology Kanpur, India	Outflow of a Gaseous Mixture with a Large Species Mass Ratio into Vacuum Bykov *, Fedorov, Zakharov Russian Academy of Sciences, Russia			

10:40 – 11:00 03:40 – 04:00 20:40 – 21:00	Superior Tecnico, Portugal	University of Toronto, Canada	Heterogeneous Catalytic Reactions of Dissociated Air on the B-cristobalite Surface Pogosbekian*, Kroupnov Lomonosov Moscow State University, Russia	Evaporation/Condensation and Nozzle Flow Modeling for FEMTA Microthruster Fowee Gasaway*, Pugia, Vorozhbit, Kazarin, Alexeenko Purdue University, USA
11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	High Temperature Flow Simulations: Reduced Models and Data Validation Kustova*, Kunova, Kravchenko, Melnik Saint Petersburg State University, Russia	Multi-Dimensional Approximate Maximum- Entropy Twenty-One-Moment Model with a Novel Approximation for Knudsen-Layer Wall Boundary Conditions Giroux*, McDonald University of Ottawa, Canada	Condensation Induced by Rapidly Moving Liquid Film Surrounded by Vapor and Non-condensable Gas Ohashi*, Kobayashi, Fujii, Watanabe Hokkaido Univeristy, Japan	Modeling of Lunar Dust Dispersion Using Two- Way Coupled Lagrangian-Lagrangian Framework Kumar*, Chinnappan, Bajpai, Bhavsar Indian Institute of Technology Kanpur, India
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	Modeling of Optical Diagnostics to Study Nonequilibrium Characteristics of High-Temperature Flows Levin, Gimelshein, Wysong, Karpuzcu* , Thirani	Investigation into New Moment-Closure-Based Quantum Hydrodynamics Models Morin* , McDonald University of Ottawa, Canada	Gas Adsorption Modeling for Various Monoatomic Gases Considering Quantum Effects Basdanis* , Misdanitis, Valougeorgis, Sharipov University of Thessaly, Greece	Coupling Carbon Oxidation and Surface Recession in Direct-Simulation Monte Carlo Code, SPARTA Arias*, Gopalan, Borner, Stephani, Plimpton University of Illinois at Urbana-Champaign, USA
11:40 - 12:00 04:40 - 05:00 21:40 - 22:00	University of Illinois, Urbana-Champaign, USA Determining Vibrational Distributions by Rotational	On the Application of Maximum-Entropy Inspired Multi-Gaussian Moment Closure for Multi- Dimensional Non-Equilibrium Gas Kinetics Brooks* , Groth, Laurent University of Toronto, Canada	Simulation of Rarefied Gas Flow in a Channel Applying Artificial Neuron Network Aksenova, Khalidov * St.Petersburg Naval Polytechnic University, Russia	Jet Expansion into the Vacuum Chamber: Kinetic-Continuum Computations and Validation Against Experiment Zaitsev*, Yarkov, Zarvin, Dubrovin, Bondar Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Raman Miles*, Dogariu, Abbasszadehrad Texas A&M University, USA	First-Order Hyperbolic-Relaxation Turbulence Modelling for Moment-Closures Yan* , McDonald University of Ottawa, Canada	Simulation of Rarefied Gas Flow Near Rough Surface Applying the Solution of Inverse Problem Aksenova*, Khalidov St.Petersburg Naval Polytechnic University, Russia	Kinetic Comparative Study of Rarefied- Transitional Flows Li*, Jiang, Geng, Chen, Wang China Aerodynamics Research and Development Center, China
12:20 - 13:20 05:20 - 06:20 22:20 - 23:20		Lunch &	k Poster	
	Session T3A: Kinetic Theory for Gases and Complex Systems I (Chair:)	Session T3B: Experimental Techniques for Non-equilibrium Flows (Chair:)	Session T3C: Bulk Viscosity and Relaxation Processes I (Chair:)	Session T3D: Non-equilibrium Reacting Flows and DSMC (Chair:)
13:20 - 13:40 06:20 - 06:40 23:20 - 23:40	Discontinuous Galerkin Methods for Hyperbolic Moment Models of the Boltzmann-BGK Equation Van Heyningen*, Nguyen, Peraire Massachusetts Institute of Technology, USA	Molecular Tagging – an Experimental Technique for Velocimetry and Thermometry in Internal	Continuum Models for Bulk Viscosity and Relaxation in Polyatomic Gases Kustova* , Mekhonoshina, Bechina, Lagutin, Alekseev	Implementation of Detailed Balance in DSMC Based on an Internal Energy Model Coupling Ro- vibrational and Electronic Energy Yang, Sun, Hu* Chinese Academy of Sciences, China
13:40 – 14:00 06:40 – 07:00 23:40 – 00:00	Fast Evaluation of the Boltzmann Collision Operator Using Data Driven Reduced Order Models Alekseenko*, Martin, Wood California State University Northridge, USA	Rarefied Gas Flows Stephane Colin* University of Toulouse, France	Saint Petersburg State University, Russia Understanding Role of Bulk Viscosity in Rarefied Polyatomic Gases Based on Rational Extended	Relaxation Processes During Gas-jet Deposition of Diamond Structures from a Cloud of Microwave-activated Gas Yudin*, Plotnikov, Rebrov Kutateladze Institute of Thermophysics of SB RAS, Russia
14:00 – 14:20 07:00 – 07:20 00:00 – 00:20	A Rotational Relaxation Model for Nonlinear Coupled Constitutive Relations Yuan , Jiang*, Zhao, Chen Zhejiang University, China	Development and Validation of a Nitric Oxide Vibrational Temperature Diagnostic Using Ultraviolet Laser Absorption Spectroscopy Krish* , Streicher, Hanson Stanford University, USA	Thermodynamics Arima* National Institute of Technology Tomakomai College, Japan	Capturing the COVID-19 Pandemic Characteristic with DSMC Method Guan, Wang* University of Chinese Academy of Sciences, China
14:20 - 14:40 07:20 - 07:40 00:20 - 00:40	Application of the Moment System of Equations in the Second Approximation to Determine the Speed and Surface Temperature of the Aircraft Sakabekov, Yergazina, Auzhani* Satbayev University, Kazakhstan	Experimental Investigation on Electron Beam Fluorescence Application in Rare Gas Flow AiGuo*, YanGuang, Zhihui, Yin, Zhonghua, Jie China Aerodynamics Research and Development Center, China	Vibrational Relaxation and Heat Capacity of CO2 under Non Thermodynamic Equilibrium Fernandez*, Alvarez, Tejeda, Montero Instituto de Estructura de la Materia, Spain	A Comparison of Nonlinear Coupled Constitutive Relations and DSMC for Hypersonic Reverse Jet Flows Huang, Zeng, Jiang*, Chen Zhejiang University, China

14:40 – 15:00 07:40 – 08:00 00:40 – 01:00	Compactness Property for the Linearized Boltzmann Operator in the Polyatomic Case Brull*, Shahine, Thieullen Institut de mathematiques de Bordeaux, France	Shock Tube Measurements of Atomic Nitrogen Collisional Excitation in Partially-ionized Nitrogen-Argon Mixtures Finch*, Granowitz, Streicher, Krish, Strand, Hanson Stanford University, USA	Studying Rotational Relaxation in Gas Mixtures	Influence of DSMC Collision Model Parameters on Hypersonic Chemically Reacting Flows Hu, Zhao, Li, Geng, Yang*, Sun Chinese Academy of Sciences, China
15:00 – 15:20 08:00 – 08:20 01:00 – 01:20	Renormalized Expressions for Momentum and Energy Exchange Terms for a Disparate Gas Mixture Gorbachev* Novosibirsk State University, Russia	Rotational Relaxation of CO2 in Supersonic Jets: A Gas Dynamic and Kinetic Study by Raman Spectroscopy Alvarez*, Fernandez, Tejeda, Montero Instituto de Estructura de la Materia, Spain	by Molecular Simulations of Rayleigh-Brillouin Scattering Ma, Yang, Bruno, Zhang* Beihang University, China	Low-variance Deviational Monte Carlo Simulation of Polyatomic Rarefied Gas Flow Using Reduction Method Shiraishi*, Imai, Yoshimoto, Takagi, Kinefuchi University of Tokyo, Japan
15:20 - 15:40 08:20 - 08:40 01:20 - 01:40		Coffee	Break	
15:40 – 16:40 08:40 – 09:40 01:40 – 02:40	(Light Extinction, Rayleigh-Brillou	Thomas in Scattering and Absorption in the Earth's	Lecture Atmosphere, and in Dilute and Dense Gase	es, Wim Ubachs* , <i>Vrije University</i>)
16:40 – 16:50 09:40 – 09:50 02:40 – 02:50		Bro	eak	
	Session T4A: Kinetic Theory for Gases and Complex Systems II (Chair:)	Session T4B: Hypersonic Vehicles and Shock Waves (Chair:)	Session T4C: Bulk Viscosity and Relaxation Processes II (Chair:)	Session T4D: DSMC V (Chair:)
16:50 – 17:10 09:50 – 10:10 02:50 – 03:10	Minimum of the Normal Momentum Flux Transferred to the Inner Cylinder in the Rarefied Couette Flow with a Fixed Outer Cylinder Abramov, Alexandrov, Buzykin, Butkovskii * Central Aerohydrodynamic Institute, Russia	CFD/Radiation Analysis of the Chelyabinsk and St Valentine Meteoroids Reynier* , Lino Da Silva Ingénierte et Systèmes Avancés, France	New Challenges in Modeling Non-Equilibrium Carbon Dioxide Flows	DSMC Study of Taylor Couette Flow with Added Circulation Garg, Bhandarkar* , Puranik Indian Institute of Technology Bombay, India
17:10 – 17:30 10:10 – 10:30 03:10 – 03:30	Unsteady-state Method for Calculating Steady Subsonic and Transonic External Rarefied Gas Flows Abramov, Butkovskii *, Buzykin Central Aerohydrodynamic Institute, Russia	Experimental Investigation on the Role of Boundary Layers Around a Supersonic Cylinder in Rarefied Flows Kovacs*, Passaggia, Mazellier, Lago CNRS, France	Elena Kustova* Saint Petersburg State University, Russia	Computation of Hypersonic Flow around an Isolated Roughness Element Using Kinetic Theory Klothakis*, Dylewicz, Theofilis, Levin Technical University of Crete, Greece
17:30 – 17:50 10:30 – 10:50 03:30 – 03:50	A Kinetic Model for Rarefied Flows of Molecular Gases with Vibrational Modes Li, Wu* Southern University of Science and Technology, China	Simulation of Radiating Non-Equilibrium Flows around a Capsule Entering Titan's Atmosphere Beyer* , Pfeier, Nizenkov, Fasoulas University of Stuttgar, Germany	Internal Energy Relaxation Processes and Bulk Viscosities Bruno, Giovangigli* Ecole Polytechnique, France	Surface Chemistry Modelling with the Simulation Tool PICLas Lauterbach* , Pfeier, Fasoulas University of Stuttgart, Germany
17:50 – 18:10 10:50 – 11:10 03:50 – 04:10	Sound Wave Propagation in Rarefied Polyatomic Gases Li, Su, Zhang* University of Edinburgh, UK	On Transitory Shock Interaction with Incipient Flow Separation Kang, Lee* KAIST, Korea	Bulk Viscosity of Dilute Gases Using MD	Analysis of Non-Equilibrium Gas Flows with Evaporation from Porous Array Membranes Imai*, Yoshimoto, Takagi, Kinefuchi University of Tokyo, Japan
18:10 – 18:30 11:10 – 11:30 04:10 – 04:30	Anomalous Transport in Flows near Simple Bodies Aristov*, Voronich, Zabelok Russian Academy of Sciences, Russia	Numerical Analysis of Shock Wave Propagation in a Macrotube at Reduced Pressures Lokhande* , Deshpande Veermata Jijabai Technological Institute, India	Simulations Sharma , Kumar* Indian Institute of Technology Kanpur, India	Implementation of Machine Learning Methods for Non Equilibrium Gas Dynamic Problems Istomin*, Kustova, Lagutin, Shalamov Saint-Petersburg State University, Russia
18:30 – 18:50 11:30 – 11:50 04:30 – 04:50	Kinetic Study of Spatial Spread of COVID-19 Waves Aristov*, Aliev, Stroganov, Yastrebov Russian Academy of Sciences, Russia	Experimental and Numerical Analysis of Rarefaction and Base Geometry Effects on Supersonic Flows Toussaint*, Noubel , Baranger, Braeunig, Lago CEA-CESTA, France	Quantum-classical Calculations of Transport Collision Integrals from Accurate Intermolecular Potentials Hong, Coletti, Bartolomei, Sun*, Pirani Chinese Academy of Sciences, China	Direct Simulation Monte Carlo Modeling of the Flip over Effect in Laser Produced Plasma Expansion Using SPARTA Emperado*, Dasallas, Garcia University of the Philippines Diliman, Philippines
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00		IAC Meetin	2 4 7	, , , , , , , , , , , , , , , , , , , ,

Time		Wed (J	uly 6th)				
	Room A	Room B	Room C	Room D			
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)		Registration					
	Session W1A: Kinetic Theory for Gases and Complex Systems III (Chair:)	Session W1B: Rarefied Flows in Porous Media (Chair:)	Session W1C: Non-equilibrium Reacting Flows I (Chair:)	Session W1D: Jet, Plumes and Vapor Deposition (Chair:)			
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20	A Kinetic Approach for Collective Dynamics Seung Yeal Ha*	Heat Conduction of Rarefied Gas in Porous Media Su*, Zhang University of Edinburgh, UK	Shock-Tube and Laser Absorption Study of the N2 + O → NO + N Reaction Rate at High Temperatures Streicher*, Krish, Chang, Hanson Stanford University, USA	Rarefied Supersonic Jet of Metal Vapor with a Light Carrier Gas: Cluster Formation Processes Bykov* , Fedorov, Safonov, Starinskiy, Bulgakov Saint Petersburg Polytechnic University, Russia			
08:20 - 08:40 01:20 - 01:40 18:20 - 18:40	Seoul National University, South Korea	Rarefied Porous Flow Effects in Lyophilization Wheeler*, Kazarin, Narsimhan, Alexeenko Purdue University, USA	Thermal Conductivity of Molecular Nitrogen from ab initio Direct Molecular Simulations Valentini*, Grover, Bisek, Verhoff University of Dayton Research Institute, USA	Moon Landing: Thrusters Cluster Plume Interactions Modelling Zitouni* , Kast, Peukert <i>OHB</i> , Germany			
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Study of the Chemical Composition of Pyrolysis Distillate Salokhiddinov* National University of Uzbekistan named after MirzoUlugbek, Uzbekistan	Predicting Rarefied Gas Flow Through Surface Functionalized Channels Kunze* , Besser, Groll, Thöming University of Bremen, Germany	Role of Translational Non-equilibrium Effects on Reactive Dynamics Controlling the Shock to Detonation Transition Using Molecular Dynamics Murugesan* , Radulescu University of Ottawa, Canada	Continuum-based Simulation of the Plume and Dusty Surface Interaction in Lunar Landing Using OpenFOAM Ejtehadi*, Mankodi, Sohn, Myong Chungnam National University, Korea			
09:00 - 09:20 02:00 - 02:20 19:00 - 19:20	Transport Coefficients for Dilute Relativistic Degenerate Gases in Arbitrary Dimensions Garcia-Perciante*, Mendez, Chacon-Acosta Universidad Autonoma Metropolitana, Mexico	Prediction of Lyophilized Cake Collapse in the Protein Drug Product based on the Cake Observation Using Micro-CT Kodama* Daiichi Sanyo Co., Ltd., Japan	Quantum Mechanically Guided Simulations of Nonequilibrium Hypersonic Flow Grover* , Valentini, Verhoff, Bisek University of Dayton Research Institute, USA	Calculation of Sputtered Atom Deposition via Non-Maxwellian View Factor Model and Particle VDF Compression Araki*, Martin Air Force Research Laboratory, USA			
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Locally-implicit Discontinuous Galerkin Schemes for the Kinetic Boltzmann-BGK System That Are Arbitrarily High-Order And Asymptotic-Preserving Rossmanith*, Sar Iowa State University, USA	Macroscopic Model for Unsteady Slip Flow in Porous Media Lasseux*, Valdés-Parada, Bottaro CNRS, University of Bordeaux, France	Bow Shock Stand-off Distance in CO2 at Reentry Velocities: Theoretical Analysis and Numerical Simulation Bondar*, Shoev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	A Parabolic Supersonic Nozzle for High Center- Line Density for Free Jets Patel*, Thomas, Joshi Institute for Plasma Research, India			
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Analytical Solution for the Development of Rarefied Shear Flow Mohan*, Sameen, Srinivasan, Girimaji Indian Institute of Technology Madras, India	Temperature Gradient Driven Flows through a Microporous Medium Johansson, Perrier, Topin, Graur* <i>Aix-Marseille University, France</i>	Evaluation of Velocity Gradient Term in Goulard Heat Transfer Theory Jeong , Yang, Yoon, Kim* Sejong University, Korea	Splitting of Laser-induced Plasma Plumes Due to the Snow-plow Effect: Kinetic-continuum Simulations Volkov*, Humphrey University of Alabama, USA			
10:00 - 10:20 03:00 - 03:20 20:00 - 20:20		Coffee Break					
	Session W2A: Recent Advances on Emergent Behaviors and Collective Dynamics (Chair:)	Session W2B: Multiphase Flows and Kinetic Modeling (Chair:)	Session W2C: Multiscale, Micro- & Nano-scale Flow and Heat Transfer I (Chair:)	Session W2D: Dust in Lunar Exploration (Chair:)			
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	A Unified Framework for Distributed Optimization Algorithms over Time-varying Directed Graphs Kim*, Choi, Yun Hanyang University, Korea	Particle Impact on the Surface of a High Mach Number Recirculating Double-Cone Flow Liu*, Marayikkottu, Karpuzcu, Levin University of Illinois Urbana Champaign, USA	Thermal Transportation inside Oscillating Cavity over Various Flow Regimes Lim, Xu* Hong Kong University of Science and Technology,	Kinetic Particle Simulations of Plasma Charging and Dust Transport near the Lunar Terminator Han*, Zhao, Lund Missouri University of Science and Technology,			

			Hong Kong PRC	USA
		Numerical Simulation of Instabilities Emerging in		
10:40 – 11:00 03:40 – 04:00 20:40 – 21:00	Asymptotic Behavior of a System for Coupled Schrodinger Equations	Gravitational Fields Using Kinetic and Continuum Approaches Kashkovsky, Kudryavtsev, Shershnev* Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Effect of Boundary in Nano-confinement Hossain, Kim* University of Ulsan, Korea	Electrostatic Dust Motion on the Moon and Asteroids: A Review
11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	Kim*, Park Sungshin Women's University, Korea	A Multi-Continuum Model for Gas Flow in Heterogeneous and Hierarchical Porous Media of Shale Reservoirs Wu*, Wang, Wang Colorado School of Mines, USA	Variational Multiscale Moment Methods for the Boltzmann Equations Baidoo* , Abdelmalik, Hughes, Gamba, Caarelli <i>University of Texas at Austin, USA</i>	Hartzell* University of Maryland, USA
11:20 – 11:40 04:20 – 04:40 21:20 – 21:40	Rigorous Derivation of the Euler-alignment Model with Singular Communication Weights from a Thomphus* Zhibui Aiguo Junlin Velocity Measurement Test in Low Density Wind Tunnel Thomphus* Zhibui Aiguo Junlin		Spacecraft Engine Plumes in Near-Vacuum: Earth's Moon and Beyond Hoey*, Soares, Alred, Anderson, Martin, Shallcross, Wong California Institute of Technology, USA	
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00		Unified Gas-Kinetic Wave-Particle Method for Gas-Particle Flow in All Regimes Yang, Xu* Hong Kong University of Science and Technology,	Numerical Analysis of Unsteady Rarefied Gas Flows around a Sphere Induced by Impulsive Rotation Tsuji, Taguchi*, Kotera	
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Convergence Analysis of the Discrete Consensus- Based Optimization Algorithm with Random Batch Interactions and Heterogeneous Noises Ko , Ha, Jin, Kim* Hanyang University, Korea	Hong Kong PRC Numerical Simulation of Decent Vehicle Entry in Dust Flow Conditions Polyanskiy*, Zaitsev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Kyoto University, Japan On the Application of the Regularized Lattice Boltzmann Method for Isothermal Flows with Non-Vanishing Knudsen Numbers Jonnalagadda*, Yadav, Sharma, Agrawal Indian Institute of Science, India	Lunar Dust: Recent Observations and Experimental Studies Zhang*, Gan, Xie Macau University of Science and Technology, Macau
12:20 - 13:20 05:20 - 06:20 22:20 - 23:20		Lui	nch	
13:20 - 21:00 06:20 - 14:00 23:20 - 07:00	Excursion			

Time	Thu (July 7th)			
	Room A	Room B Room C		Room D
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)	Registration			
	Session Th1A: Hypersonic Vehicles, Facilities, and Diagnostics I (Chair:)	Session Th1B: Electric Propulsion I (Chair:)	Session Th1C: DSMC VI (Chair:)	Session Th1D: Hypersonic Flows I (Chair:)
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20 08:20 - 08:40	Experimental Investigation of Waverider Aerodynamic Forces in Supersonic and Hypersonic Slip Regime Noubel*, Lago, Baranger CNRS, France A Canonical Optimization Approach for Waverider	Physics-based and Data-driven Models of Low- Temperature Plasmas for Aerospace Applications Hara* Stanford University, USA	Noncontinuum Effects at the Smallest Scales of Turbulence Gallis*, McMullen, Krygier, Torczynski Sandia National Laboratories, USA Thermal Transpiration Flows Induced by	Recent Progress of Impulse Facilities at KAIST Park*, Kim, Yang KAIST, Korea
01:20 - 01:40 18:20 - 18:40	Inverse Design Son, Son, Yee* Seoul National University, Korea Doppler-free Saturated Absorption Velocimetry for	Stanjora Oniversity, OSA	Differences in Accommodation Coefficients Sugimoto*, Sugimoto Kyoto University, Japan Direct Simulation Monte Carlo Simulations of 2D	Application of Modified Chemical-Kinetic Parameters to High-Enthalpy Flows
08:40 - 09:00 01:40 - 02:00 18:40 - 19:00	Low-density Hypersonic Flow Diagnostics Roy*, O'Byme University of New South Wales, Australia	Ion Transport in the Magnetic Nozzle of Electrodeless Plasma Thrusters for Spacecraft Mazouffre* , Vinci, Inchingolo, Navarro-Cavalle,	Rayleigh-Benard Convection Han , Lo*, Mo National Defense University, Taiwan ROC	Parameters to High-Enthalpy Flows Kim* Sejong University, Korea
09:00 – 09:20 02:00 – 02:20 19:00 – 19:20	Numerical Simulation of Aerodynamic Characteristics of a Sharp-edged Vehicle Using NNW-UGKS Dingwu , Jin, Pei*, Meiliang, Haomin China Aerodynamics Research and Development Center, China	Fajardo CNRS, ICARE laboratory, France PIC Model of Air-breathing Hall thruster	A Hybrid Unified Stochastic Particle Bhatnagar- Gross-Krook and DSMC Method for Polyatomic Gases Fei*, Hu*, Jenny Huazhong University of Science and Technology, Chinese Academy of Sciences, China	Electronic-state-resolved Non-equilibrium Analysis of ICP Discharges Kumar*, Munafo, Panesi University of Illinois at Urbana-Champaign, USA
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Prediction of Aerodynamic Heating over Hypersonic Flow Using Rapid Aerothermodynamic Analysis Program Yeo, Han, Kim, Seo, Kim* Seoul National University, Korea	Taccogna*, Cichocki, Minelli CNR-ISTP, Italy	The Chemically Reacting Hypersonic Flow over a Reentry Capsule with Hybrid Chemical Reaction Gokul , Malaikannan* SRM Institute of Science and Technology, India	A Numerical Model for Porous Ceramics Composites Oxidation Using Volume Averaging
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Numerical Simulation of Operating Characteristics of JF12 Shock Tunnel for Mars Entry Aerodynamic Tests Han*, Hu, Peng, Han, Jiang Chinese Academy of Sciences, China	Part 1: Experimental Studies on Taylor Cone Formation with Annular/Linear Slit Configured Emitter for FEEP Thruster Kwon, Kumar, Kwon, Yoh * Seoul National University, Korea	Recommended Direct Simulation Monte Carlo Collision Model Parameters for Reacting Methane Flows Gosma, Gopalan, Stephani* University of Illinois at Urbana-Champaign, USA	Theory Le Maout*, Konnik, Rzepka, Foster, Panerai, Stephani University of Illinois at Urbana-Champaign, USA
10:00 - 10:20 03:00 - 03:20 20:00 - 20:20	Coffee Break			
	Session Th2A: Hypersonic Vehicles, Facilities, and Diagnostics II (Chair:)	Session Th2B: Electric Propulsion II (Chair:)	Session Th2C: DSMC VII (Chair:)	Session Th2D: Hypersonic Flows II (Chair:)
10:20 - 10:40 03:20 - 03:40 20:20 - 20:40 10:40 - 11:00	Numerical Simulations of Rarefied Gas Flow over an Aero-spiked Hypersonic Blunt Body Using the Second-Order Boltzmann-Curtiss Constitutive Model Chourushi, Singh, Vishnu, R. S. Myong* Gyeongsang National University, Korea Experimental Study of Sphere Drag Measurement in	Unique Physical Features of Cylindrical Hall Thruster Plasmas for Low Power Operation Choe*, Kim, Doh, Lim, Lee, Kim KAIST, Korea	Effect of Rarefaction on Axial Vortex Using Direct Simulation Monte Carlo Dhurandhar*, Mohan, Sharma, Sameen Indian Institute of Technology Madras, India Thermally Driven Rarefied Flows Induced by a Partially Heated Diamond in a Channel	Self-consistent Modeling of ICP Discharges Munafo*, Kumar, Le Maout, Chiodi, Panesi University of Illinois at Urbana-Champaign, USA
03:40 - 04:00 20:40 - 21:00	Hypersonic Low-Density Flow Using Accelerometer Lee, Park* KAIST, Korea		Partially Heated Diamond in a Channel Zhu, Roohi* Xi'an Jiaotong University, China	Bayesian Inference of Chemical-Kinetic

11:00 - 11:20 04:00 - 04:20 21:00 - 21:20	Validity of the Blowing Correction Correlation in Rarefied Flow Regimes Appar, Sivakumar, Bajpai, Kumar*, Naspoori Indian Institute of Technology Kanpur, India	Hybrid Kinetic-Fluid Simulations of Hall Thruster Plasma Dynamics Kawashima*, Komurasaki	Flow-field and Performance Analysis of Plug Nozzle Under Continuum, Rarefied and Transitional Flow Regimes Jency, Appar, Khan, Kumar* Indian Institute of Technology Kanpur, India	Parameters of CN for Titan Entry Jo, Rostkowski, Panesi* University of Illinois at Urbana-Champaign, USA
11:20 - 11:40 04:20 - 04:40 21:20 - 21:40	A Pump-Probe Laser-Induced Fluorescence Diagnostic for Measuring Velocity Distributions in High-Enthalpy Wind Tunnels Cousens*, O'byrne University of New South Wales Canberra, Australia	Shibaura Institute of Technology, Japan R&D Activities of Electric Propulsion	Hypersonic Turbulence Modeling from Rarefied to Continuum Regimes Tumuklu , Hanquist* <i>University of Arizona, USA</i>	Comparison of Thermochemical Nonequilibrium Models for Hypersonic Flow Analysis in OREX Vehicle Yang, Kim*
11:40 – 12:00 04:40 – 05:00 21:40 – 22:00	Aerodynamic Force Measurement Technique of Free- Flying Model in a Shock Tunnel Choi, Park* KAIST, Korea	at Korea Aerospace Research Institute (KARI) Kim*, Kim, Cho, Doh, Lee, Kim, Choe KAIST, Korea	Monte Carlo Simulation of Thermal Creep Flow Around a Set of Plates with Different Surface Temperatures in a Pipe Matsumoto* , Kurita, Kato Yokohama National University, Japan	Sejong University, Korea
12:00 – 12:20 05:00 – 05:20 22:00 – 22:20	Development of Detonation Driven Shock Tunnels and the Application in Hypersonic Vehicle Tests Hu*, Peng, Han, Han, Jiang Chinese Academy of Sciences, China	Sensitivity Analysis of Mesh-to-Mesh Interpolation in 2D Fluid-Particle Simulation of Hall Thruster Plasma Jung, Sung* Korea Aerospace University, Korea	Multi-Zone Kinetic-continuum Simulation of An Orbit Correction Thruster Back Flow Around a Space Station Kashkovskya*, Bondar Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia	Suitability of Tunable Diode Laser Absorption Spectroscopy Experiments for Low Density Flows Kelly*, Cousens, O'Byme University of New South Wales, Australia
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20				
	Session Th3A: Boltzmann and Related Equations III (Chair:)	Session Th3B: Numerical Methods for Kinetic Equations III (Chair:)	Session Th3C: Nanoscale Transport Phenomena at Interfaces I (Chair:)	Session Th3D: Non-equilibrium Reacting Flows II (Chair:)
13:20 – 13:40 06:20 – 06:40 23:20 – 23:40	Simulating Low-speed Rarefied Flows around 3D Particulate and Droplets Duncan Lockerby*	Efficient Compressible Lattice Boltzmann Methods: Numerical Equilibria and Adaptive Mesh in Phase Space Coreixas*, Latt, Shan University of Geneva, Switzerland	"Law of the Nano-wall" in Nano-channel Gas Flows	Theoretical Modeling of Effects of Microstructure on Surface Oxidation under Rarefied Nonequilibrium Conditions Zhang, Wang* University of Chinese Academy of Sciences, China
13:40 - 14:00 06:40 - 07:00 23:40 - 00:00	University of Warwick, UK	A symmetry Class Approach to 3D Discrete Collision Models via Computer Algebra Babovsky*, Grabmeier Technische Universität Ilmenau, Germany	Barisik* <i>Izmir Institute of Technology, Turkey</i>	Hypersonic Nonequilibrium Prandtl-Meyer Expansion Khraibut*, Gai University of New South Wales, Australia
14:00 – 14:20 07:00 – 07:20 00:00 – 00:20	Measure-valued Solution to the Inelastic Boltzmann Equation with Hard Potentials Qi*, Jang The Chinese University of Hong Kong, Hong Kong, PRC	Solving Kinetic Equations Using Quadrature Based Moment Methods Van Cappellen*, Laboureur von Karman Institute for Fluid Dynamics, Belgium	Nanofluidic Transport under Continuous and Discontinuous Graphitic Confinements Park* POSTECH, Korea	Construction of a Boltzmann Model Equation Synchronously Involving Polyatomic Molecular Internal Energy, Dissociation and Recombination Effects for Multicomponent Gases Wu*, Li, Peng, Jiang China Aerodynamics Research and Development Center, China
14:20 – 14:40 07:20 – 07:40 00:20 – 00:40	Kinetic Theory of Confined Systems Maynar*, Garcia de Soria, Brey Universidad de Sevilla, Spain	Neural Network Assisted Modeling and Simulation of Kinetic Theory and Fluid Mechanics Xiao* Schotthöfer, Frank Karlsruhe Institute of Technology, Germany	Exploring the Link Between the Interfacial and	Slip Boundary Conditions for Gas Mixture Flows with State-to-state Vibrational-Chemical Kinetics Shakurova*, Kustova Saint Petersburg State University, Russia
14:40 - 15:00 07:40 - 08:00 00:40 - 01:00	Understanding an Instability in Vibrated Granular Monolayers Soria* , Maynar, Brey <i>Universidad de Sevilla, Spain</i>	Nonlinear Approximation of the Boltzmann Equation with an ES-BGK Collision Model Using the Method of Moments van der Woude* Abdelmalik, van Brummelen Eindhoven University of Technology, Netherlands	Bulk: Functionalized 2D Materials as a Key for Nanoscale Engineering Bakli* Indian Institute of Technology Kharagpur, India	Computational Simulation of Reentry Flows over Hypersonic Vehicles Using Nonlinear Coupled Constitutive Relations Zeng*, Zhao, Jiang, Chen Zhejiang University, China

15:00 – 15:20 08:00 – 08:20 01:00 – 01:20	Moment Equations for a Polytropic Gas Reproducing Adjustable Transport Coeffcients Djordjic* , Pavic-Colic, Torrilhon <i>RWTH Aachen, Germany</i>	Simulation of Multi-species Non-equilibrium Gas Flows with the Particle-Based Ellipsoidal Statistical Bhatnagar-Gross-Krook Method Hild*, Pfeiffer University of Stuttgart, Germany	Modeling Molecular Transport Phenomena in Nanochannels, Superlattices and Nanotubes Masuduzzaman, Al Hossain, Karim, Kim * <i>University of Ulsan, Korea</i>	Study on Chemical Reaction Channels of CO2+O ← CO + O2 Based on ab initio Calculation Furudate*, Hagebaum-Reignier, Jeung Chungnam National University, Korea	
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40		Coffee Break			
15:40 – 16:40 08:40 – 09:40 01:40 – 02:40	GNU-ERC Lecture (Thermodynamically Consistent Generalized Hydrodynamic Theory of Flows Far Removed from Equilibrium, Byung-Chan Eu*, McGill University)				
16:40 – 16:50 09:40 – 09:50 02:40 – 02:50		Bre	eak		
	Session Th4A: Boltzmann and Related Equations IV (Chair:)	Session Th4B: Numerical Methods for Kinetic Equations IV (Chair:)	Session Th4C: Nanoscale Transport Phenomena at Interfaces II (Chair:)	Session Th4D: Multiscale, Micro- & Nano-scale Flow and Heat Transfer II (Chair:)	
16:50 – 17:10 09:50 – 10:10 02:50 – 03:10	A Kinetic Derivation of Cahn-Hilliard Fluid Equations Giovangigli* Ecole Polytechnique, France	Efficient and Accurate Deterministic Solver for the Boltzmann Equation: The Fast Spectral Method and General Iterative Scheme	Microfluidic Platform for Rapid and Dynamic Transport Control of Nanoparticles Kim* , Ha, Seo <i>UNIST, Korea</i>	Three-dimensional Unified Gas-Kinetic Wave- Particle Method for Diatomic Gases in Rotational and Vibrational Nonequilibrium Wei, Zhu, Xu* The Hong Kong University of Science and Technology, Hong Kong PRC	
17:10 – 17:30 10:10 – 10:30 03:10 – 03:30	Hilbert Expansion Based Fluid Models for Describing Rarefied Gases Interacting with a Plasma Background Medium Maes*, Dekeyser, Koellermeier, Baelmans, Samaey KU Leuven, Belgium	Southern University of Science and Technology, China	A Comparison of Spectral Current and	Diffusion-slip Boundary Conditions in Modelling Flows in Micro- and Nano-channels Tomy*, Dadzie* Heriot-Watt University, UK	
17:30 – 17:50 10:30 – 10:50 03:30 – 03:50	Dissipation and Dispersion Properties of Discrete Velocity Boltzmann Model on Nine-velocity Lattice Ilyin* Russian Academy of Sciences, Russia	Limits of the Kinetic Interpretation of Lattice Boltzmann Schemes: A Cure via a Macroscopic Standpoint with Finite Difference Schemes on the Conserved Moments Bellotti*, Graille, Massot Institut Polytechnique de Paris, France	Temperature Dependent Wavelength of Vibrational Carrier Modes in Carbon Nanotubes and Boron Nitride Nanotubes Anandakrishnan, Sathian* Indian Institute of Technology Madras, India	Approximation of State-Resolved Diffusion Coeffcients Using Artificial Neural Networks Bechina , Kustova, Avrutskiy, Chikitkin* Moscow Institute of Physics and Technology, Russia	
17:50 – 18:10 10:50 – 11:10 03:50 – 04:10	Balanced States and Closure Relations: Kinetic Models in the Fluid Dynamic Limit Babovsky* Technische Universität Ilmenau, Germany	Exponential BGK Integrator for Multiscale Flow Simulation Garmirian*, Gorji, Pfeiffer University of Stuttgart, Germany	Coherent Phonon Scattering in the Coated Grain Nanocomposites and Their Thermoelectric Performance Kim*	A data-driven Approach to DSMC-CFD Coupling for Multiscale Gas Flows Tatsios*, Chinnappan, Kamal, Vasileiadis, Gibelli, Docherty, White, Borg, Kermode, Lockerby University of Edinburgh, UK	
18:10 – 18:30 11:10 – 11:30 04:10 – 04:30	About Macroscopic Boundary Conditions for Three Dimensional Nonlinear Nonstationary Boltzmann's Moment System of Equations Sakabekov*, Auzhani Satbayev University, Kazakhstan	Advances in the Development of the Fokker- Planck Method for Simulation of Rarefied Gases Basov* , Grabe German Aerospace Center, Germany	Yonsei University, Korea	Asymptotic Modelling of the Flow of a Thermal Binary Gas Mixture in a Microchannel with Variable Width Croizet*, Gatignol Sorbonne University, France	
18:30 – 18:50 11:30 – 11:50 04:30 – 04:50	Salotyer Chreshy, Madulishi	SMARTA: a Code Based on the View-Factor Method for Collisionless Flows Parodi*, Alsalihi, Magin von Karman Institute for Fluid Dynamics, Belgium	On the Mechanism of the Thermally Induced Tangential Knudsen Force Yonemura*, Otic Chubu University, Japan	Computational Analysis of Pressure-Driven Gas Flows through a Periodical System of Short Channels in Wide Range of Rarefaction Voronich*, Titarev The Russian Academy of Sciences, Russia	
19:00 – 21:00 12:00 – 14:00 05:00 – 07:00		Ban	quet	· ·	

Time	Fri (July 8th)			
	Room A	Room B Room C		Room D
07:30 – 08:00 (KST) 00:30 – 01:00 (CEST) 17:30 – 18:00 (CDT)	Registration			
	Session F1A: Boltzmann Equation and BGK Models: Theory and Numerics I (Chair:)	Session F1B: Space Vehicle Aerodynamics and Propulsion I (Chair:)	Session F1C: Molecular Dynamics and Particle Methods I (Chair:)	Session F1D: Vacuum Technology I (Chair:)
08:00 - 08:20 01:00 - 01:20 18:00 - 18:20 08:20 - 08:40	Ellipsoidal BGK Model of the Boltzmann Equation with the Correct Prandtl Number Yun* Sungkyunkwan University, Korea	The VATMOS-SR Mission Concept: DSMC Studies of the Gas Sampling Borner*, Rabinovitch, Gallis, Parai, Petkov, Avice, Sotin AMA Inc. at NASA Ames Research Center, USA Performance Comparison of Xenon and Krypton Mixture Discharges in 500 W-class Cylindrical	Effect of Confinement on Non-equilibrium Flow of Dense Gases Yonghao Zhang* University of Edinburgh, UK	Estimation of Gas Surface Interaction Coefficients in VKI's Dual Chamber Vacuum Facility Jorge*, Hubin, Magin von Karman Institute for Fluid Dynamics, Belgium Modeling Contaminant Outgassing and Free Molecular Transport Processes for the Cryogenic
01:20 – 01:40 18:20 – 18:40	Non-Uniqueness of Stationary Solutions to the Radiative Transfer Equation	Hall Thruster Kim , Park, Doh, Lee, Choe* <i>KAIST, Korea</i>		SPHEREx Observatory Alred*, Moore, Susca, Ricchiuti, Rocca, Soares California Institute of Technology, USA
08:40 – 09:00 01:40 – 02:00 18:40 – 19:00	Jang*, Velázquez Pohang University of Science and Technology, Korea	Reentry Aerothermodynamics of a Deorbiting CubeSat with DragSail Adhikari*, Black, Cofer, Alexeenko Purdue University, USA	Knudsen Minimum Disappearance in Molecular- Confined Flows Corral-Casas*, Li, Borg, Gibelli University of Edinburgh, UK	Evaluation of a Space-borne MLI Performance by Using and Experimental Estimation Kim, Chang, Kim, Huh* Chungnam National University, Korea
09:00 – 09:20 02:00 – 02:20 19:00 – 19:20	Holder Regularity of the Boltzmann Equation Past an Obstacle Kim, Lee* Pohang University of Science and Technology,	Investigation of Gurney Flap on Aerodynamic Characteristics of NACA4412 Airfoil Wang, Li, Jiang*, Mao, Li China Aerodynamics Research and Development Center, China	Comparison of Two Approaches in Molecular Dynamics Simulation of Gas-Surface Interaction Tao , Wang* University of Chinese Academy of Sciences, China	Topological Impact of a Simple Self-Replication Geometric Structure with Great Application Potential in Vacuum Pumping and Photovoltaic Industry Luo*, Day Karlsruhe Institute of Technology, Germany
09:20 – 09:40 02:20 – 02:40 19:20 – 19:40	Korea ES-BGK Model for Diatomic Gases with Translational- Rotational and Translational-	Plume Simulation of Atmosphere-Breathing- Electric-Propulsion System Moon , Jun* <i>KAIST, Korea</i>	Characterization of Second-order Non-Navier- Fourier Constitutive Laws in Planar and Cylindrical Couette Flow Using Molecular Dynamics Simulations Kammara, Sharma, Myong* Gyeongsang National University, Korea	Rarefied Gas Dynamic Applications in Spacecraft Contamination Control Engineering at NASA JPL Hoey*, Soares, Alred, Anderson, Martin, Shallcross, Wong California Institute of Technology, USA
09:40 – 10:00 02:40 – 03:00 19:40 – 20:00	Vibrational Energy Exchanges Dauvois, Mathiaud, Mieussens* , Pfeiffer <i>Univ. Bordeaux</i> , France	Similarity Study on The Aeroheating of the Hypersonic Strong Shear-Compression Flow Gao, Wang* University of the Chinese Academy of Sciences, China	Multiscale Modeling of Electrospray Thrusters with Particle-in-Cell and Molecular Dynamics Nuwal*, Azevedo, Klosterman, Levin, Rovey University of Illinois Urbana Champaign, USA	A Direct Simulation Monte Carlo Framework for the Simulation of Mercury Driven Diffusion Pumps for Fusion Reactor Exhaust Pumping Teichmann*, Giegerich, Day Karlsruhe Institute of Technology, Germany
10:00 - 10:20 03:00 - 03:20 20:00 - 20:20	Coffee Break			
	Session F2A: Boltzmann Equation and BGK Models: Theory and Numerics II (Chair:)	Session F2B: Space Vehicle Aerodynamics and Propulsion II (Chair:)	Session F2C: Molecular Dynamics and Particle Methods II (Chair:)	Session F2D: Vacuum Technology II (Chair:)
10:20 – 10:40 03:20 – 03:40 20:20 – 20:40	To be updated Kim* University of Wisconsin Madison, USA	A (very) Quick Overview of NASA Planetary Exploration Missions and the VATMOS-SR Mission Concept Jason Rabinovitch*	Multiscale Simulation of Gas Flow in a Micro Thruster Based on the Unified Stochastic Particle BGK method Sun, Hu*, Fei*, Sun Chinese Academy of Sciences, Huazhong University of Science and Technology, China	Accurate Modeling and Simulation of NVBCS Based on the Test Particle Monte Carlo Method Sun*, Li, Wang, Wang, Deng, Zhang Anhui University of Science and Technology, China
10:40 – 11:00 03:40 – 04:00		Stevens Institute of Technology, USA	Bulk Viscosity of Dilute Gases and Their Mixtures Using Equilibrium Molecular Dynamics	Numerical Cooling Power Predictions for a Dilution Refrigerator via Kinetic Modeling

20:40 - 21:00	Small Solutions of the Einstein-Boltzmann System Coupled with a Non-Linear Scalar Field with		Approach Sharma, Kumar*, Pareek, Singh Indian Institute of Technology Kanpur, India	Tantos*, Zilz, Day, Adam, Wernsdorfer Karlsruhe Institute of Technology -Campus Nord, Germany
11:00 – 11:20 04:00 – 04:20 21:00 – 21:20	Bianchi Symmetries Lee* Kyung Hee University, Korea	DSMC Calculation and Analysis of Aerodynamic Drag of VLEO Satellite Jiang, Zhang* Beihang University, China	Molecular Dynamics Simulations on Scattering of High-Speed Ar Molecules on Pt(100) Surface Ye, Hu, Sun* University of Chinese Academy of Sciences, China	Simulating the Effect of Background Gas in Stoichiometry of Film Produced by Pulsed Laser Deposition Mata*, Dasallas, Garcia University of the Philippines Diliman, Philippines
11:20 - 11:40 04:20 - 04:40 21:20 - 21:40	Local Velocity Grid Conservative Semi-Lagrangian Schemes for the BGK Model Cho*, Boscarino, Russo Gyeongsang National University, Korea	Axial-Azimuthal Numerical Modeling of Hall Thruster Plasmas to Investigate Electron Anomalous Transport Park, Kim, Doh, Lee, Choe* KAIST, Korea	The Effect of Boundary in Nanoscale Phenomena on the Atomic-level Interface Masuduzzaman, Kim* University of Ulsan, Korea	Recent Advances in the Theory of Kinetic Equations of Collision Dynamics Gapyak*, Gerasimenko Taras Shevchenko National University of Kyiv, Ukraine
11:40 - 12:00 04:40 - 05:00 21:40 - 22:00	Well-Posedness and Singularity Formation for	Effect of Thermochemical Nonequilibrium on Supersonic Combustion Liu, Yao*, Sun* University of Chinese Academy of Science, China	Desorption Kinetics for Carbon Surfaces with Defects Chaithanya Kondur, Stephani* University of Illinois at Urbana-Champaign, USA	A Meshfree Arbitrary Lagrangian-Eulerian (ALE) Method for the BGK Model of the Boltzmann Equation with Moving Boundaries Tiwari*, Klar, Russo TU Kaiserslautern, Germany
12:00 - 12:20 05:00 - 05:20 22:00 - 22:20	Vlasov-Riesz System Choi* Yonsei University, Korea	Mixed Flow Charged Aerodynamics for Small Satellite Orbital Predictions Watson* , Glowacki, Parashar, Capon Victoria University of Wellington, New Zealand	Collision Integrals of Interacting Atoms and Ions - Analysis of Used Approximations and Best Practices Buchowiecki* University of Szczecin, Poland	Comparison of Different Time-Stepping Methods Based on the Simulation of an Electron Gun Ott*, Pfeiffer University of Stuttgart, Germany
12:20 – 13:20 05:20 – 06:20 22:20 – 23:20		Lunch		
	Session F3A: Boltzmann Equation and BGK Models: Theory and Numerics III (Chair:)	Session F3B: Space Vehicle Aerodynamics and Propulsion III (Chair:)	Session F3C: Molecular Dynamics and Particle Methods III (Chair:)	Session F3D: Multiphase Flows and Granular Flows (Chair:)
13:20 – 13:40 06:20 – 06:40 23:20 – 23:40	Conservative Semi-Lagrangian Methods for Kinetic Equations Russo*	Three Dimensional Plasma Discharge in Annular Hall Thruster Channel with Multiple Collision Models in OpenFOAM Anflo, Lee* Seoul National University, Korea	Molecular Dynamics Simulations for Nanoscale Mass Transport Phenomena in Polymer Electrolyte Fuel Cells	Non-monotonic Heat Flux Trends in a Rarefied Granular Gas Hong* , Morris <i>Purdue University, USA</i>
13:40 – 14:00 06:40 – 07:00 23:40 – 00:00	University of Catania, Italy	Performance Study of Intake Device for Atmosphere-Breathing Electric Propulsion Jun* <i>KAIST, Korea</i>	Takashi Tokumasu* Tohoku University, Japan	Role of Viscosity in Macroscopic Description of Cluster Formation in Granular Flow Suzuki* University of Tokyo, Japan
14:00 – 14:20 07:00 – 07:20 00:00 – 00:20	A Mixed Boltzmann-BGK Model for Gas Mixtures Bisi* University of Parma, Italy	Analysis of DSMC Flow Profiles Generated in Microgap Plasma Thrusters Using Different Electrode Plate Configurations Guevara Jelid*, White, Kontis University of Glasgow, UK	Determination of Shear and Bulk Viscosity of Dilute Gases and Their Mixtures Using Accurate Inter-molecular Potentials Sivakumar, Sharma, Kumar* Indian Institute of Technology Kanpur, India	Surface Polishing Using Particle-laden Gas Flows Garg, Agarwal* Indian Institute of Technology Bombay, India
14:20 - 14:40 07:20 - 07:40 00:20 - 00:40	Derivation Of BGK Models for Complex Gases from Entropy Minimization Brull* Institut de math'ematiques de Bordeaux, France	Design of a Low-Reynolds-Number Airfoil for Mars Exploration Airplane Using a Transition Model Jung, Yee, Jeong* Seoul National University, Korea	Air Outflow into Vacuum Periodically Interrupted by Bodies Moving Towards the Jet Yakunchikov* Lomonosov Moscow State University, Russia	Symmetric Simulations of Droplets with a Particle based Vlasov-Enskog-Solver Tietz*, Pfeiffer, Fasoulas University of Stuttgart, Germany
14:40 – 15:00 07:40 – 08:00 00:40 – 01:00	On Multi-Species Kinetic Modeling of Plasma	Time-stepping Global Stability Analysis of Hypersonic Flows Dylewicz* , Klothakis, Theofilis, Levin	A Weighted Particle Scheme for Solving the Enskog-Vlasov Equation in Spherical Geometry Busuioc* , Gibelli	Interaction of Shock Waves in Dilute Rapid Granular Gas Khan , Jaiswal, Patel, Kumar, Kumar*

15:00 – 15:20 08:00 – 08:20 01:00 – 01:20	University of W [*] urzburg, Germany	Part 2: Numerical Studies on Taylor Cone Formation and Its Inherent Characteristics for FEEP Thruster Kumar, Kwon, Kwon, Yoh* Seoul National University, Korea	Assessment of Molecular Mean Free Paths and Its Application in Micro/Nanochannel Gas Flows Xie* University of Derby, UK	Uniform Shear Flow in a Granular Gas of Inelastic and Rough Maxwell Particles Santos*, Kremer Universidad de Extremadura, Spain
15:20 – 15:40 08:20 – 08:40 01:20 – 01:40	Relativistic BGK Model for Inert Gas Mixtures Hwang , Lee, Yun* Sungkyunkwan University, Korea	Investigation on the Mode Transition Process in a Three-Dimensional Scramjet Combustor Equipped with a Strut Yan*, Liao, Meng, Huang National University of Defense Technology, China	Stefan-Maxwell Diffusitivies of Gas Mixtures, and Onsager's Regression Hypothesis Zyskin* , Monroe* University of Oxford, UK	Kinetic-based Two-phase Flow Model: A Reduced-order Model of Polydisperse Oscillating Droplets with Geometrical Variables Loison*, Pichard, Kokh, Massot Ecole Polytechnique, France
15:40 – 16:00 08:40 – 09:00 01:40 – 02:00	BGK Model for Multi-Component Gases Near a Global Maxwellian Bae, Klingenberg, Pirner, Yun* Sungkyunkwan University, Korea		Performance Evaluation of CLL-Kernel Using Accommodation Coefficients Obtained by the Classical and the Correlation Method Nejad*, Nedea, Frijns Eindhoven University of Technology, Netherlands	
16:00 – 18:00 09:00 – 11:00 02:00 – 04:00		Farewo	ell Party	

Poster Presentations (45; On-site In-Person & Virtual) ¹KST, CEST, CDT

Time ¹	Tue (July 5th)	Wed (July 6th)	Thu (July 7th)
	Virtual Poster Session T1		Virtual Poster Session Th1
10:20 - 10:30 03:20 - 03:30	The First DSMC Model Created on COMSOL Multiphysics® Denpoh*		Design Exploration on the Mixing Augmentation Mechanism Induced by the Cantilevered Ramp Injector in the Shock-induced Combustion Ramjet Engine
20:20 – 20:30	Tokyo Electron Technology Solutions Ltd, Japan		Du, Huang* , Yan National University of Defense Technology, China
10:30 - 10:40 03:30 - 03:40 20:30 - 20:40	Accurate Modeling and Simulation of a Rotor-stator Row Based on the Test Particle Monte Carlo Method Sun*, Zhang, Han, Zhao, Zhang, Han Northeastern University, China		Effect of High-Altitude Atmosphere on Resonant Rossiter Frequencies of Cavity Flow Uthpala, Lee, Myong, Lee* Gyeongsang National University, Korea
10:40 – 10:50 03:40 – 03:50 20:40 – 20:50	On the Role of Finite Size of Vehicles and Multilane Highways in the Traffic Flow Fundamental Diagram Méndez*, Marques Jr, Velasco Universidad Aut'onoma Metropolitana- Cuajimalpa, Mexico		Calculation of Newtonian Aerodynamic Coefficients with Mesh Refinements Using Kernel Interpolation Jo, Furudate* Chungnam National University, Korea
10:50 – 11:00 03:50 – 04:00 20:50 – 21:00	Variational Approach to Thermal Creep Flow in Microchannels on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules and General Boundary Conditions Nguyen*, Lorenzani FPT University, HCM, Vietnam		Reflected Shock Data Interpretation with the DSMC Method Wysong*, Streicher, Krish, Hanson, Gimelshein Air Force Research Laboratory, USA
11:00 - 11:10 04:00 - 04:10 21:00 - 21:10	Numerical Simulation for OLED Manufacturing Process in High Vacuum System Park*, Seo, Lee, Seo, Shon Metariver Technology Co., Korea		Numerical Investigation of Pyrolysis Gas Interaction with Hypersonic Reentry Flow-Field Appar, Bajpai, Naspoori, Kumar* Indian Institute of Technology Kanpur, India
11:10 – 11:20 04:10 – 04:20 21:10 – 21:20	3D Density Field of Shock Tube by Background Oriented Schlieren Technique and Physics Informed Neural Networks Hur, Lee*		A Second Order Velocity Slip and Temperature Jump Boundary Condition for Thermodynamic Non Equilibrium Flows Liu*, Wu
11:20 – 11:30 04:20 – 04:30 21:20 – 21:30	Seoul National University, Korea A Multi-Prediction Implicit Scheme for Gas Flow in All Flow Regimes Yuan*, Wu, Liu, Zhong		Southern University of Science and Technology, China Design and Optimization of Hypervelocity and High-Enthalpy Nozzles Wang*, Jiang
11:30 – 11:40 04:30 – 04:40 21:30 – 21:40	Southern University of Science and Technology, China Rarefied Cylindrical Couette Flow with Different Boundary Surface Temperatures Abramov, Alexandrov*, Butkovskii Central Aerohydrodynamic Institute, Russia		Chinese Academy of Sciences, China Surface Defect and Al2O3-Nanoparticle Bombardment on Graphite Surface Jeon, Kwon, Lee, Park*
11:40 – 11:50 04:40 – 04:50 21:40 – 21:50	Axisymmetric Simulation of Interaction of Rocket Exhaust with Lunar Surfaces Shaik*, Gavasane, Mankodi, Bhandarkar Indian Institute of Technology Bombay, India		Gyeongsang National University, Korea Extending Low-rank Radiation Transport Methods and Exploring Partial Frequency Re-distribution Applications Cambier*, Taitano, Abrantes Air Force Research Laboratory, USA
11:50 - 12:00 04:50 - 05:00 21:50 - 22:00	The Knudsen Number Effect of Hypersonic Flow over a Re-Entry Capsule Gokul, Malaikannan* SRM Institute of Science and Technology, India		Runtime based Weighted N-way Partitioning Scheme for Direct Simulation Monte Carlo Codes Mankodi* Indian Institute of Technology Guwahati, India
12:00 – 12:10 05:00 – 05:10 22:00 – 22:10	Numerical Investigation of Thermal Creep like Flow in Micro- Channels with Different Temperature Quadrilaterals Han*, Wang, Zhang, Zhang Northeastern University, China		Analysis of Continuum Breakdown of Jet Interaction with Rarefied Flow Yang, Song, Wang, Sun* Chinese Academy of Sciences, China
12:10 – 12:20 05:10 – 05:20 22:10 – 22:20	Non-equilibrium Shock Wave Structure in Supersonic Granular and Molecular Gas Bajpai, Appar, Khan, Kumar, Kumar*		DSMC Simulations of High-Speed Flow Instabilities Kashkovsky*, Kudryavtsev, Shershnev Khristianovich Institute of Theoretical and Applied Mechanics SB

	Indian Institute of Technology Kanpur, India		RAS, Russia
12:20 - 13:20	I 10 D ((O ')	т 1	I 10 D ((O '())
05:20 - 06:20 22:20 - 23:20	Lunch & Poster (On-site)	Lunch	Lunch & Poster (On-site)
22.20 23.20	Virtual Poster Session T2		Virtual Poster Session Th2
	Numerical Analysis of Flow Field according to Nozzle Shape in		Effect of Velocity Slip and Temperature Jump at the Fluid-Solid
13:20 – 13:30	LPCVD Furnace		Interface in a Coupled Chemically Reacting Flow
06:20 - 06:30 23:20 - 23:30	Ji, Sohn, Ko*		Appar, Sivakumar, Kumar*
25:20 – 25:30	Sungkyunkwan University, Korea		Indian Institute of Technology Kanpur, India
13:30 - 13:40	G13-Based Moment Gas Kinetic Solver for Steady and Unsteady		Deep Learning Methods for CH4 and CO2 Detection in Near and
06:30 - 06:40	Rarefied Flows: Discrete and Explicit Form		Shortwave Infrared Spectral Ranges
23:30 - 23:40	Liu* , Shu National University of Singapore, Singapore		Jang, Kim* Inha University, Korea
			Supersonic Gas Flow into a Vacuum through a Forward
13:40 - 13:50	Lagrangian-Lagrangian Simulation of Dusty Gas Flow Past a Cylinder		and Backward Facing Step in a Wide Range of Rarefaction
06:40 - 06:50 23:40 - 23:50	Bajpai, Bhavsar, Appar, Bhateja, Kumar* Indian Institute of Technology Kanpur, India		Sazhin*
25:40 – 25:30			Ural Federal University, Russia
13:50 - 14:00	On Some Recent Advances in the Kinetic Theory of Collisional		Non-stationary Rarefied Gas Flow in a Channel with Oscillating
06:50 - 07:00	Dynamics		Barriers in a Wide Range of Knudsen Numbers
23:50-00:00	Gapyak*, Gerasimenko Taras Shevchenko National University of Kyiv, Ukraine		Kosyanchuk* Lomonosov Moscow State University, Russia
	Reynolds Analogy for the Rarefied Gas Flow Past a Flat Plate at Zero		Local Nonequilibrium Molecular Distribution Function
14:00 - 14:10	Incidence: Similarity Parameters		Reconstruction from the Continuum Models
07:00 - 07:10 00:00 - 00:10	Abramov, Butkovskii*		Timokhin*, Rukhmakov, Bondar
00.00 = 00.10	Central Aerohydrodynamic Institute, Russia		Lomonosov Moscow State University, Russia
14:10 - 14:20	Rarefied Gas Flow Past a Flat Plate		The Effect of Source Pressure on a Coating Process Using the Aerosol
07:10-07:20	Abramov, Butkovskii* , Buzykin		Deposition Method Agir* , Cao, White, Kontis
00:10 - 00:20	Central Aerohydrodynamic Institute, Russia		University of Glasgow, UK
	Lattice Boltzmann Solver for One-dimensional Computational		Onversity of Guasgow, ON
14:20 – 14:30	Hemodynamics: Applications to Modeling of Pressure Losses		Hypersonic Boundary Layer Flow with an Obstacle in the Near
07:20 - 07:30	in Arterial Networks		Continuum Regime
00:20 - 00:30	Ilyin*, Kochergin, Stroganov		Chen, Stemmer*
	Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Russia		Technical University of Munich, Germany
	A Fick's Law Recovering Relaxation BGK Operator for General		Accommodative Dependence of the Photophoresis of a Fine Aerosol
14:30 - 14:40	Mixtures of Gases		Particle
07:30 - 07:40 00:30 - 00:40	Brull, Guillon*, Thieullen		Chernyak, Sograbi*
00.30 - 00.40	Institut de Mathématiques de Bordeaux, France		Ural Federal University, Russia
14.40 14.50	Homogenenous States of Granular Gases of Inelastic Hard		GPU Code Implementation for Numerical Solving of
14:40 – 14:50 07:40 – 07:50	Spheres under Nonlinear Drag		Multidimensional Kinetic Equations Malkov*, Kudryavtsev
00:40 - 00:50	Megias, Santos*		Khristianovich Institute of Theoretical and Applied Mechanics SB
001.0	Universidad de Extremadura, Spain		RAS, Russia
	Implementation of Test Particle Monte-Carlo Codes in the		Comparative Analysis of Numerical Schemes for the Vlasov
14:50 - 15:00	Development of a Metal Foil Pump		Kinetic Equation
07:50 - 08:00	Kathage*, Luo, Day		Malkov*, Kudryavtsev
00:50 - 01:00	Karlsruhe Institute of Technology, Germany		Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Russia
15:00 - 15:10			Granular Flow past an Elliptical Obstacle
08:00 - 08:10			Bhavsar, Bajpai, Khan, Kumar*
01:00 - 01:10			Indian Institute of Technology Kanpur, India